
\qquad

Digitalcapacitance meter

 colour graphics V.d.u. Multipath distortion
The only limitation is your imagination

Tektronix

wireless world

ELECTRONICS/TELEVISION / RADIO/AUDIO

APRIL 1980 Vol 86 No 1532

39 Science of the whole		
40 Digital capacitance meter by Adrian Ryan		
45 How serious is multipath distortion? by Pat Hawker		
48 Literature received		
49 Shared-memory, colour graphics visual display unit by S. J. Marchant		
55 Circuit analysis by small computer by A. S. Beasley		
58 Pulse-induction metal detector - 2 by J. A. Corbyn		
60 World of amateur radio		
61 Mercury switch for parallel-tracking pickup arm by Rod Cooper		
Racal gets Decca Digital telecine Graphite transmitter valve grids		
68 A.m. detectors by S. W. Amos		
75 Letters to the editor Programmable notes for keyboard instruments / Politics and electronics Displacement current		
79 What's so natural about e? - $\mathbf{3}$ by J. C. Finlay		
82 Books; Sixty years ago		
85 Improving photodiode camera signals by Daryll K. Green		
Light controller	89 Circuit ideas Improved tone control	Voltage follower
	91 New products	

WIRELESS WORLD ARI

MICROCHIPS AT MICRO PRICES	THE MOST VERSATILE LIQUID CRYSTAL DISPLAY	
Pare our prices before you bir		
m		
	1.24 $25+100+$ LCD106 6.45 5.50 5.25	
6 Dynamic RAM Special of	5" Field effect LCD display featuring $31 / 2$ digits, colon, plus / minus sign,	
EP		
${ }^{17024}$ 2708 ${ }^{\text {20, }}$		
2716 Single 5v supply ${ }^{\text {Specia oferer }} 17.95$	3 decimal	
	''LO BAT' indicator.	
Are		
Chatiactirceneraio	digital thermometers,	
	AM/FM radio readouts. Just look at the features.	
	Ultra low power con-	
${ }^{1 \text { İM Compatie }}$	sumption, high contrast	
MUP14042VL	ratio, wide viewing	
	angle, rapid response, proven sealing techni-	
INTERSIL CHIPS ARE nown		
	SE 01 Sound Effects Kit NEW	
LINEAR IGS		
${ }_{3}^{30 p}$ NE		
旡		
	ar co	
(l)		
VOLTAGE REGULATORS		
UNIVERSAL SCR		
C1060 400v 5a 35p		
NEW: Ar.3.8910 Bang		
AY3-8910 PROGRAMMABLE		
SOUND GENERATOR SOUND GENERATOR The AY3-8910 is a 40 pin LSI chip with		
produce almost any sound, it will playthree note chords, make bangs, whistles,COMults! (Speaker nat includCOMPLETE KIT ONLY		
sirens, gunshots, explosions, bleets,		
	dISPLAY LEDs DL 70404,170710FNO $500 /$ FND 510	
60 page manual with S-100 interface instructions and severexamples $£ 1.95$ extra.	From T1.1. Tlago par/Dot driver	
Texas Instruments Low Profile Sockets		
Contacts		
8 PIN14 PIN	Orimers intomation: For orders under	
16 PIN 18 PIN		
20 PIN	MICRO CIRCUITS	
24 PIN .22		
28 PIN		
40 PIN	$\begin{aligned} & \text { Ieford (02372) } \\ & \text { Telex } 8953084 \end{aligned}$	

Measure Resistance to 0.01Ω
At a Price that has no resistance at all

ONLY £55

 DMM AT THIS PRICFOR A LIMITED PERIOD ONLY.

THE ULTIMATE IN PERFORMANCE MEASURES RESISTANCE TO 0.01 OHMS, VOLTAGE TO 100 MICROVOLTS, CURRENT TO 1 MICROAMPS AT LOWEST EVER PRICE! FEATURES

- $3 \frac{1}{2}$ digits $0.56^{\prime \prime}$ high LED for easy reading
- $3^{11 / 2}$ digits $0.56^{\prime \prime}$ high LED fo
- $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.01 \Omega$ resolution
- High input impedance 10 Megohm
- High acsuracy achieved with precision rèsistors,
not unstable trimpots
- Input overload protected to 1000 V (except
f 200 mV scale to 600 V)
- Auto zeroing, autopolarity
- Mains (with adaptors not supplied) or battery - operation-built-in charging circuitry for NiCads
- Hi Low endication
- Hi Low power ohms, Lo for resistors in circuit,

MODEL 7010 FREQUENCY COUNTER
S DIGITS 10 HZ to 600 MHz
ONLY E120 + VAT

- Range 10 Hz zo 600 MHz

- $\begin{aligned} & \text { M Megohm and } 50 \text { ohm inputs } \\ & \text { AC ICC o Nicad rechargeable }\end{aligned}$
- battery operation

DC POWER SUPPLIES a vast range PSICHEDELIC LIGHTS EQUIPMENT METAL DETECTOR suited to meeting both amateur and professional requirements MEASURING INSTRUMENTS Digital frequency meter, digital capacity meter
various models of light modulators,
with/without microphone, stroboscope, spot lights etc.
EQUIPMENT FOR CB linear amplifiers, Our articles, which are of top quality,
S.W.R. meter, wattmeters are known and exported worldwide.

The PM 2517 has set the standard and the pace in Europe for hand-held digital multimeters and still it remains in a class of it own.
Remember, its many important features include full four digits, so on mains voltage readings, for example, you might get 240.3 instead of the 240 , which a $31 / 2$ digit meter would read.
Some other PM 2517 plus points:
LED or LCD display
True RMS readings of AC voltage and current
Autoranging with manual override
Op Reader inquiry number 220
The PM 3207 - Super Scope-is a tough, general purpose oscilloscope which offers at a low price the quality and technology you expec rom Philips Test and Measurin Instruments.

Both these instruments are available off the sheff from the Philips Electronic Instruments Department (see address below) or from the following distributors $\mathbf{R r i t}$
Wessex Eleadr Tottenham, London NIT ORN. Tel: $01-808-4884$. Philips Service Centres (25 throughout the country). Tel: $01-686$ - 0505 for the address of your neare

PATTERN FOR THE FUTURE

The PM 5519 colour TV pattern generator is
aleady a widely used instrument. As a major
manufacturer of Video cassette recorders and colour television receivers - and recorders, and which has sevelopeded the world's mosta tadvanced
video disc system - Philips have carefilly selected ideo discs system - Philip have careftully selected
the best patterns for aligning. and testing these products. With over 20 colour and b / w test
patterns to choose from it it the most vers
pattern
enenator on the market.
PM
5519 I

- PM 5519 Ifor British system

Exosition)
- Composite sync outpunt or modiugering.
includes the line frame and blanking pulses
includes the line frame and blanki
to the ocal TV stampard
Reader inquiry number 222
Some other Philips audio and video Service instruments: 5326 RF SIGNAL GENERATOR
- 100 kHz - 125 MHz in 9 overlapping rang

Test \& Measuring
Instruments

- Built-in 5 digit counter 50 can be attenuated to
over 100 dB
- Electronically stabilised output level
- Wobbulator facilty
- Wobbulator facility

PM 6307 WOW AND FLUTTER METER

Al Philps audio and video service instruments are ee end of PM 3202 s seftion).
 Philips Test ond Moasuring nstruments -ond we wilbe
Changing the disploy frequenty becouse we hove a lot of
product Where y ou thequire yuil iliformotion obout aproduct, tick. ecoupon and ottach it to your name ond oddresss or etternear-o or. of course. .use the journais reader nquirn

PM 2517 multimeter PM M 2070 ossilloscope
PM 5519 colour TV patte PM 5336 RR signal pantern gen
PM 6307 wow and fluterer Inquiry no.
220
221
221
222
223

223
\qquad Pye Unicam Ltd

PHILIPS

Finally, you can have all the advantages of DAMs and none of the disadvantages of analogues for about the same price.
Our new 169 is a tough, lightweight, battery-powered digital multimeter for use in the field or on the bench. It is a $3 \frac{1}{2}$-digit, full 5 -function DMM with respectable $.25 \% \mathrm{DC}$ accuracy.

Its low-parts-count, high-efficiency design keeps power consumption to a minimum for longer component years.

All 5 functions are fully protected -1400 V peak on DCV and ACV, 300 V on Ω.

Is this the end

 and abuse normally associated with tough applications.

Cost-conscious ease of maintenance is so thoroughly designed into the 169 that meters? only one calibration adjustment a year is required. That adds up to a cost-of-ownership no other competitive DMM can touch. For example, the 169 needs only one battery change per year at a cost of about $£ 1.50$

When you factor in features like function and range annunciation right on the display, auto-zero, auto polarity, 60% larger display than other DMMs and the easy-to-read, colour
coded front panel, we think you'll get the point. coded front panel, we think you'll get the point.
No analogue meter or DMM can match the price No analogue meter or DMM can match the price/
performance of the new 169 . It costs $£ 99$ (plus VA performance of the new 169 . It costs $£ 99$ (plus VAT)
For information on the 169 or any Reithley

For information on the 169 or any Reithley
call (0734) 861287 DMM call (0734) 861287
Telex: 847047
Ex stock
WW 034 FOR FURTHER DETAILS

KEITHLEY

Kolehloy Instruments Ltd.

1. Bolton Rood
GB -Reading, Berkshire RG2 ONL UNITED KINGDOM
(0734) 861287 Telex:
Keithlay Instruments GmbN Heigithofstrasse 5
$\mathrm{D}-8000$ München D-8000 Muncher
$1089) 714-40-65$ Telex: 5212160

Keithloy Instruments SARL 44, Rue Anatole France F-91121 Palaiseau Cede
$01-014-22-06$ Telex: (842) 204188

\qquad is

 SOLDERING IRONS -16w Producing $420^{\circ} \mathrm{C}$
(Helping the Save -it campaign) -PUSH-INTIPS

- 6MONTHS GUARANTE ADCDH:
United Kingdoms Leading Soldering Instrument Manufacturers Tel.01-622-0291/4

ADCOLA PRODUCTS LIMITED

GAUDEN ROAD, LONDON SW4 GLH

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator, wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

WIRELESS WORLD, APRIL 1980

BEWDRE! RTDIO RTIUTIN @

Microcomputers are coming - ride the wave! Learn to program. Millions of jobs are

 language of the small sompleter
and the most easy-t-toarn
and
 $\square \rightarrow$ H

THE CS1577 30 MHz at $2 \mathrm{mV}+$ Signal Delay The most popular scope in the range.
The CS 1577 is. without doubt, our most popular oscilloscope and hundreds of satisfied
users in all sections of the electronics ind ustry will confirm this. The C S 1577 combines

 Truly an oscilloscope masterpiece. CS 1577 .
CS 1577 only $\mathbf{£ 4 1 0}+$ VAT, includes 2 probes.

THE CS1575, unique dual trace 4 function Audio Scope The CS1575 is a unique tool for the audio engineer. II features the onrmal facility of dual
race display with sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ but not

Absolutely indispensable to the professional audio engineer, the CS 1575 is now in use
all over the word. See it in action or send for complete detais. CS1575 only $£ 235$ + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER
FC756 500 MHz COUNTER

DC to 1000 V AC to 1000 V

 AC to 1000$\Omega=20 \mathrm{M} \Omega$
1 to
Semi Auto Ranging

$10 \mathrm{~Hz}-500 \mathrm{MHz}$
50 mV
Superb
instrument
£225 + VAT
L-WFE
ELEETRONTES

Carston Electronics

specialists in second user test

 and measuring instrumentsNEW

TEKTRONIX 465
DC-100MHz Dual Trace 5 mV - $5 \mathrm{~V} /$ Div 4 MHz f 1250
TEKTRONIX 475A
DC-250MHz Dual Trace 5 mV -5V/ Div $3 \mathrm{MHz} £ 1950$

The world overYou get the best service from Haltron

For high quality electronic valves, semiconductors and integrated specify Haltron It's the first choice of Governments and many other users throughout the world. Haltron product quality and reliability are clearly confirmed. The product range is very, very wice. And Hatron expor requirements. Wherever you are, get the best service. From Haltron.

Hall Electric Limited
Hall Electric Limited, Electron House, Mary Cray. Orpington, Kent BR5 30J. Telephone: Orpington 27099
Telex: 896141

The largest electronics retailer in the world.
OVER 170 STORES AND DEALERSHIPS NATIONWIDE

Topvalue testequipment
 Topvalue testequipment fromTANDY

LCD DIGITAL MULTIMETER. LOW-COST LCD MULTIMETER COMPONENTS AND PARTS

AC/DC 8 MHz OSCILLOSCOP

tor 16 factories
You save because we design
manufacture, sell and senvic Tandy have over 7.00 stores s. nत daealerships . products has been achieved by over 60 years
worddwide. Over 2.500 product
of cont

TANDY
DEALER

We'll help you see infra-red and put you on target as well.

As manufacturers of the widest range of broadband infra-red detectors in Europe we offer designers an extensive range of devices to suit virtually all their project requirements.

So, whether you're involved in infra-red detection for industrial, military or research applications in any of these fields, things are looking better for you:

- Gas analysis
- Laser detection and measurement
- Intruder and fire alarms
- Radiometry and spectroscopy

Plessey infra-red detectors feature a range of element materials: ceramic, lithium tantalate, triglycine sulphate; a choice of windows and filters for selecting spectral response and a choice
of electronics to give the required signal response.

And, if your need is for fast photovoltaic detectors for CO_{2} laser range-finding applications, we can also offer lead tin telluride in the 10-11 micron region. High $\mathrm{D}^{*}\left(4 \times 10^{10} \mathrm{cmHz}^{1} \mathrm{~W}^{-1} \lambda \mathrm{p}, 800,1\right)$ bandwith to 10 MHz and beyond.

Whatever your requirements, ask for our latest catalogue to put you on target.

(14) PLESSEY

 Wood Burcote Way, Towcester Northants, United Ki Plessey Optoelectronics and Microwave Limited
1641 Kaiser Avenue, Irving Califronia 2714, , USA.
 Telephone: (714)

Whatever it is, the $\quad-\quad| | S^{\prime}$ range

 of power amplifiers will handle itne $-\mathrm{H}| | \mathrm{H}$
' range is designed to handle heavy industrial usage in the fields of vibrator driving, variable frequency power supplies and servo motor systems.
S 500D
Dual Channel
$19^{\prime \prime}$ rack mount $312^{\prime \prime}$ high
500 w r.m.s. into 2.5^{5} ohms per channel
900w r.m.s. in bridge mode
DC-20 KHZ at full power
0.005% harmonic distortion (typical) at
300 w r.m.s. into 4 ohms at 1 KHZ
3KW dissipation from in-built force cooled
dissipators

S 250D

 Single Channel$19^{\prime \prime}$ rack mount $3^{1 / 2^{\prime \prime}}$ high
500 w r.m.s. into 2.5 ohms
Retro-convertible to dual channel DC-20 KHZ at full power
Full short and open circuit protection Drives totally reactive loads with no adverse effects

IReless world, APRIL 1980

Guess who builds this great

Logic Probe...YOU!
 With this easy-to-build Logic Probe Kit from CSC and just a

 few hours of easy assembly-thanks to our very descriptiv few hours of easy assembly-thanks to our very descripticstep-by-step manual-you have a full performance logic probe.
With it, the logic level in a digital circuit indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanoseconds are stretched into blinks of the Pulse LED, triggered from either leading edge. You'll be able to probe deeper into logic
 either leading edge. You'll be able to probe deepe
with the LPK-1, one of the better tools from CSC.

Getting-orgot-yourown personalcomputer?

Then for your own personal satisfaction, get Practical Computing.
Month after month, it helps you cut the costs and yet get the utmost evaluations of leading microcomputers; programmes for computer
out of personal computing. Choosing hardware; buying software; TVames; dozens of possible new applications; expert advice on Monthater month,
out of personal computings. Choosing hardware; buying software; writing programmes; getting to know microcomputer terminology
-here are the essential basics, crisp and clear. But that's only the - here are the essential basics, crisp and clear. But that sonly the
start. Gooing deeper Practical Computing gives you exhaustive test This Month:
A review of bulk storage devices. How to finance a micro
business. Basic languages available for Nascom.
businews. Basic languages availa Detar Nascom.
Reviews: Nascom 2, Commodore Database, Superbrain.
As part of a continuous programme we show you how to write
the assembly language for the 6502 and 8080
April issue out now, 50p.
From your newsagent - or post this coupon now.
To. Subscription Sevicing, IPC Business Press Lto., Oakield House, Perrymount

Please eost me a cony of Practical Computing every month for a year. I enclose
cheaue/
Name...
Name... using Apple, Commodore Pet and Tandy; and valuable overall eviews of where computing is heading today.

A complete range of matching transformers and peripheral equipment for closed loop, constant current and voltage use are available.
Alternative input and output termination to order. Rack case for bench use built to specifications. For complete data write or call.

Kirkham Electronics
MILL HALL, MILL LANE, PULHAM MARKET, DISS, NORFOLK IP21 4XL DIVISION OF K.R.S. LIMITED
TELEPHONE $(037976) 639 / 594$
FRANCHISED COMMERCIAL AND INDUSTRIAL AGENTS FOR ELECTRONICS ww 033. For further details

AT LAST THE ULTIMATE IN TONE CONTROL IS HERE!

When we decided to design a graphic equaliser to end all graphic equalisers - we had no idea exactly how long it would take. Not just to give more facilities than ali the others - that wasn't too aifricuit for us - but to outperform all the competition and at a reasonable price - took a little longer than we expected.
To our overseas agents and all our customers who have been so patient - we think it has been worth the wait.

2 stereo bands of 30 faderss with centre click stops giving 20 dB of control - Leve centre frequencies giving a total ran

- Uniocisp feedbact dersign for for minimum curve distortion

WW - 023 FOR FURTHER DETAILS

"HOW CAN I BE SURE OF BUYING THE RIGHT VIDEO?"

It's easy to make mistakes when buying video equipment. from libraries or other companies? Will you want a lot Buy the cheapest and you may soon find that it can't of duplicate tapes?
meet the varying needs of all the people (in marketing. From your answers we can build up a video package management, training and security, for example) who will want to use it.
Buy the most expensive and you could literally waste thousands on features never used
Forget compatibility and the future and you could
find yourself spending more money on extra equipment - or discarding equipment you've just bought.

WIDE CHOICE. GOOD ADVICE

Through our network of Video Centres, we a Bell \& Howell distribute one of the largest video ranges in the U.K. This means that we can offer well-founded advice about the many options and thus help you avoid investing in mistakes. So talk to us before buying video. Ask us "What's right for me?"
We answer that question by first helping you to define how you're going to use a video system.
We. pose the questions buyers often forget to ask (and sellers sometimes ignore). Who will use it? When? And where? Is colour necessary? Do you want to edit your own programmes? Will you use tapes
meet your exact needs. It could be a simple monochrome camera with a VHS video recorder Or a sophisticated three-tube colour camera with portable recorder, monitor and electronic editing suite Whatever it is, we make this promise

If you don't need something, we'll tell you so. If you do need it, we can supply it - all the way to a total video need it, we can supply it - all the way to a total video system which, because has been tailored to your individual needs, will be right for you.
AND SUPERSHIELD

No matter what you buy from the Bell \& Howell video range, our unique Supershield warranty will guarantee you free adjustments, repairs or replacements (except for tapes and tubes) for two years after purchase. And if the job can't be done on the spot, we'll provide transport to and from a specially equipped Supershield video workshop.

Like our practical advice, that's also free. Because we believe Service starts before a sale and continues long, long after.

Let Bell \& Howell show you the answer:

ww - 083 FOR FURTHER DETAILS

WW - 082 FOR FURTHER DETALS

20 Hz to 100 MHz - $£ 77.55$

It's an incredible price for a very credible frequency unter . . . Continental's MAX-100.
It comes to you from a major American corporation and has one operating range, and on
100 MHz , minimum. (Guaranteed.)
So we've pensioned off the range selector, and fitted the sharpest of LED displays. (Sheer brilliance.)
We've also designed the MAX-100 around the latest in LSI technology; and built-in high sensitivity, with a 30 mV trigger level; protection against high transients; and an outstanding accuracy of 3ppm. (What performance!) But, most importantly, the MAX-100 is totally
automatic - and available now. In fact, you could have on omorrow
Hesitating? Just take a look at the spec. Then, if you're ready to order immediately, call us on (0799)21682
ww - 014 FOR FURTHER DETAILS
wW - 014 FOR FURTHER DETALLS
your MAX-100 could be on its way, today! (Continent are great performers, too.)
For data, please use our enquiry number

 Temperature stability 0.2 ppm per ${ }^{\circ} \mathrm{C}$ * Max. ageing rate 10ppm
per year * Overfrequency indication * Low battery power alarm

 Quality.At a low, low, price. Quality. At a low, Iow, price.

Use CRT displays in your systems or equipment? Then Use CRT displays in your systems or equipment? Then
it's well worth yetting to know the KGM resources. We can take both design and production problems onto our
own experienced shoulders. Far better than struggling ow experienced shoulders. Far better than strugg lin
with complex video concepts yourself !
For a quick scan of $K G M$. For a quick scan of KGM capability, look through our
new colour folder - featuring some of the units we have new colour forder- -eaturing some of the units we
produced for major customers. Some are based
on our standard monitor range - but even these con on our standard monitor range - but even these con
with a choice of thick film modules or discrete com ponents, for maximum 'tailor-made' flexibility. And
 now, ring our Sales Applications Engineer. Or start
one of those folders. KGM Electronics Limited
Clock Tower Road, isleworth, Middiesex TW7 6DU
Tel: $01-568$ 0151. Telex: 934120
HEBNAELECTRONI

Your attention please!

MIL series amplifiers are designed and priced for installations in a wide range of
applications including churches, schools, applications including churches, schools,
restaurants, factories, shops and offices.

Each amplifier is available with input facilities for microphones and music sources six programme push button AM tuners or FM
available options

One model incorporates automatic switching to a battery supply in the event of a power failure.
Such a versatile system can confidently
satisfy your exact requirements.

Name
Position
Attach this coupon to your letter heading and send to:
MILLBANK ELECTRONICS GROUP LIMITED, MARKETING SERVICES UNIT
MILLEANK P.O. BOX 33, UCKFIELD, SUSSEX. ENGLAND

Special Products Distributors Limited O 029 Piccadily, London W1V OHL

[^0]Avo Sales and Service Centre
Quick turn round on estimates/repairs Large stocks of new AVOMETERS

Recognise me?

If you do
you should know
your
authorised
(0) Farnell International

Farnell International Instruments Ltd.
Sandbeck Way, Wetherby West Yorkshire LS22 4DH Tel 093763541 Telex 557294 Farist G

WW-070 FOR FURTHER DETAILS Freepost Birmingham B19 1BR ELECTRONICS 021-233.2400 $\quad 24$ HR PHONE ANSWERING SERVICE *PLEASE SEND AN S.A.E. FOR DETAILS OF OUR KITS (INCLUDES A TELETEXT KIT AT £192.90)*

carbon film RESISTORS
 PRICES REDUCED. SEND FOR DETAILS NOW
 Z. 1 AERO SERVICES LTD. 42-45A Westbourne Grove ondon W2 5 SF London W2 5 SF Tel. $01-7275641 \quad$ Telex 261306.

MICROSYSTEM
DEVELOPMENT

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fasie erse times stypicilly 20 minutes for 2708 EPROM

Priced at only E89.70 (inc VAT, p\&p)
MODEL UV 140 EPROM ERASER

GP Industrial Electronics Limited

ww-040 FOR FURTHER DETAILS

thandar High Quality, Low Cost! sc110 Single- Trace Portable Oscilloscope. 10 MHz band width; 10 MHz band width 10 mV div sensitivity. f139.00

thandar
 Huntingdon,
Cambs. PE17 4H Tel: St. Ives (0480) Telex: 32250
Sinclair Electronics Ltd. reserve
the right oto alter prices and
specirifation anter or Trices andar
equipment without prior
specificictions on handar
equipment without prior notice.

the crême de la crême of electronic organs FOR YOU TO BUILD...
Yes, any one of these superior instruments can be built by yourself in the comfort of you own home. The unique WERSI Kit-pack system is designed
around modular units using the latest IC technology. Fully drilled P.C. boards together with beautifully illustrated instructions and preformed harnesses lead you to the final l product which is now becoming accepted as she world's sosst advanced instrument. All cabinets come fully assembled
in a wide range of veneers. Home construction enables you to buid one of these fabulous organs at 40% below factorp price All a wide range of veneers. Home construction enables you to build one of these fabulous organs at 40% below factory price.
All Electro-- ooice showroms have resident demonstrators so whn not come alog and hear for yourself the wonder of WERSI. Alternatively send
$£ 1$ for the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth, Horis RD 3 PF). $E 1$ tor the 140 colour information package. (FREEPOST Electro-Voice, Rickmansworth, Heris RD3 6 PF).

NOTTINGHAM
389 Aspley Lane

MAIL ORDER PROTECTION SCHEME
(Limited Liability)

WW-081 FOR FURTHER DETALLS

137 Standard Ranges in a variety of sizes and stylings available for $10-14$
days delivery. Other Ranges and special scales can be made to order.

Thenew Toolrange catalogue

still the only catalogue of itskind
The New Toolrange Catalogue is still the only comprehensive single source of electronic tools and production aids. The product range has almost doubled since last year and now over 2,000 tools, toolkits and service aids are illustrated in full colour.
Products from over 100 top manufacturers are available from stock.
Over 60,000 catalogues are now in circulation. If you don't have one simply write, telephone or telex Toolrange for your free copy.

WIRELESS WORLD, APRIL 1980

Super Print 800
 companion for PET, APPLE, TSR8O,
Exidy, Superboard, Compukit Ohio Exidy, Superboard, Compukit, Ohio
Challengers and most micro's Rugged metal enclosure makes it ideal
for home computing, small business

16 Baud Rates to 19,200 *96 Characters ASC Standard "Auxiliary User Defined Character Set 9% Accepts 8% max. paper. - pressure feed Model 800 ONLY $£ 329+$ VAT
Model 800 st ONLY $£ 389+$ VAT

TYPE 8025
TYPE 8026

TYPE 8027
TYPE 8028
TYPE 8029
TYPE 8030
TYPE 8031
watts maximum RF output.
HIGH STABILITY PHASE-LOCKED SIGNAL 20 MHz . 1000 MHz . 1 V . output at 50 ohms UHF TELEVISION PREAMPLIFIER Channel group Gain 20 dB . Noise factor 1.2 dB . Weatherproof
100 kHz - 500 MHz Z WIDEBAND MIXER.
$10 \mathrm{MHz}-1500 \mathrm{MHz}$. WIDEBAND MIXER.
MASTHEAD WEATHERPROOF UNIT Units.
POWR SUPPLY/ OUTPUT SPLITTER UNIT
Stabilized mains power supply. rovides 4 outputs from one amplifier
UNTIS ARE AVAILABLE FROM STOCK. CONTAC

Pestrin Hoinlimintions

RESEARCH COMMUNICATIONS LTD

PEEL HOUSE \bullet PORTERS LANE OSPRINGE
FAVERSHAM \odot KENT ME 13 ODR © ENGLAND TELEPHONE: FAVERSHAM 2064 (STD CODE 079 582)

Tentelometer
Tape Tension Meters for all audió and video tape recorders and players Stocked and distributed for Europe by

The Experts (6)

CROW OF
PO POX 36 RO OR RAD NG LIMITD 595025 ww - 010 FOR FURTHER DETAL

ELECTRONIC VALVES WANTED

All Types Receiving, Transmitting, Industria PL504-PL802 - PCL805 - CV131 - CV136 CV138 - CV329 - CV345 - CV450 - 805 -813-2K25. Etc.

Phone/write to:
PYPE HAYES RADIO LTD
606 Kingsbury Road
021-373 4942

TV TUBE REBUILDING

Faircrest Engineering Ltd., manufacture a comprehensive
range of equipment for processing all types of picture tubes, range of equipment for processing all types of picture tubes,
colour and mono. Standard or custom built units for established or new businesses. We export world-wide and have an
excellent spares service backed by a stron technical team Fuil training courses are individually failored to customers

For full details of our service contact Neil Jupp
FAIRCREST ENGINEERING LTD.
Willis Road, Croydon, CRO2xX
$01-6841422,01-6898741$
ww - 060 FOR FURTHER DETALL

Open youreyestoallthat's availabletoTVuserstoday

Prestel. Teletext. Video Tape Recording. TV microcomputing. TV games.
One journal - and only one - covers the whole TV information scene. Take Viewdata and TV User every quarter - and you'll be up-todate on all technical developments, and on jus what is available on your screen.
Viewdata contains the official Post Office Prestel Directory. It is published by Prestel Directory. It is published by linked editorially with IPC's own Viewdata service (on Prestel 456). It also sponsors the world's first annual Viewdata exhibition For an eye-opening experience, post the coupon today.

To Marketing Dept.. Electrical-Electronic Press Ltd., Room 626A. Dorset House. Stamford St..
Please send me.........copy(ies) of Viewdata and TV U every quarter for a year. I enclose cheque/p.o. for.... (Annual subscription: $£ 4$, inc. post and packing. Cheque
etc., to be made payable to IPC Business Press). Name.
Address..
Vieviuldila

fact: the PRO MASTER"'sound system is not an evolution... it's a full-blown REVOLUTION!

The PRO MASTER modular sound system ushers in a new generation of sound system versatility, reliability, and quality for today's entertainers, musicians, and speakers-for
use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and use in settings as diverse as intimate clubs, lounges, large auditoriums, churches, and
schools. Its multitude of performance-proven features is the result of sophisticated computer design techniques, advanced materials, and countless hours of persona consultation with performers and sound technicians.

Revolutionary New Console
 capabilities sequirea by expenienced protessional performers-Such owntone controlst. LED olifiping indiciators with atten uators on each

Revolutionary: Variable Dispersion Sound System
Advanced new variable dispersion high.frequency yorn system
projecocts your sound ever
ever where in in he house,

Revolutionary New Loudspeaker
Every extra ounce-every unnecessary cubicinch-has been
computer designed OUT Of the PRO MASTER Ioudspeaker. Modern
 Merformance molinctin woethniaues accommodate a high-

PLUS . . . Revolutionary: FEEDBACK FINDER ${ }^{\text {TM }} /$ Equalizer PATCH BLOCK ${ }^{\text {rM }}$ Patch Panel LED Status Indicators

" ${ }^{\circ}$ SHURE
 PRO MASTER ${ }^{\text {TM }}$ sound system

Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU—Telephone: Maidstone (0622) 59881

Editor:
TOM
IVALL, M.I.E.R.E.

Deputy Editor:

 Phone 01-261 8435Technical Editor: GEOFFREY SHORTER, B.Sc.

Projects Editor
MIKE SAGIN
Phone: $01-2618$
\qquad
Communications Edito
TED PARRAT B.A.
Phone $01-2618620$
Drawing Office Manager
ROGER GOODMAN
Technical Illustrator:
BETTY PALMER
Production \& Design:
Advertisement Controller:
G. BENTON ROWELL

Advertisement Manage
Phone 01-261 8622
DAVID DISLEY
barky leary
BARRY LEARY
Phone $01-2618515$
Classified Manager:
BRIAN DURRANT
BRIAN DURRANT
Phone 01-261 8508 or 01-261 8423
MIKE THRAVES
Classified Adverisem
Phone $01-2618508$
JOHN GIBBON (Make-up and copy)
Publishing Director:
Publishing Director:
GORDON HENDERSO

Science of the whole

wireless world

The study of all creation and man's place in it was the only kind of science worthy of
consideration, in Tolstoy's view. A school curriculum of sufficiently wide scope for construct and a good deal more to practise cont at the conclusion of such a course of instruction a child would be well on the way No becorer to the modern scene, and Nearer to the modern scene, and
considerably less ambitious in his requirements, was A. N. Whitenead, who remarked that wisdom is the fruit of a
balanced development. In this context, the balance is not between the two specialisations in science or the arts, but etween education and training.
One must recognise that, to a degree now than ever before, spec is necessary if potential engineers and
scientists a re to have a reasonably platform on which post-school training can be built. Merciless economics dictates that scientifically-aware youngsters are needed even to stand still, let alone to grow. In the sixth form at school, and even earlier in some schools, the specialisation in science hesult that universities and technical colleges have received a steady stream of entrants, well grounded in the relevant
disciplines It is true that there is now a shortage of science teachers of the required level of competence, but that is a separate and more recent issue.
That is all as it should be. But while a
knowledge for his professional training (and here is no sexist meaning intended in that pronoun or succeeding ones) the 'balanced
development ' is unlikely to be obtained by an exclusive study of maths, chemistry, physics and a useful language, even though
token 'art' (in the wider sense) may be token 'art' (in the wider sense) may be
tacked on for the sake of appearances. I one's entire two yars of sixth-form experience is devoted to analysis rather tha appreciation in less precise terms of the future which many fear and of which some already see the first signs becomes more
probable. If a sixth-former has no freedom to view the world in a less calculating way
in his last two years of education, there will be even less possibility of his doing so university.
Those whose busins it to recommendations on education are aware of he need for 'breadth', but allow it only a symbolic presence in courses of study. For education, written on behalf of the Counc of Engineering Institutions, recognizes the concept of "study in breadth", but goes on oo propose a list of five subjects to be tak
in a new examination for young people intent on a science or engineering caree the five subjects are maths, English anguage, physical science, a European
language and at least one other "relevant career choice". The breadth is taken care of by "other supplementary subjects as outside the sciences is thus lumped together ounside the sciences is thus lumped to to "supplementary subjects" A tendency to segregate 16 -plus pupil and even younger ones in some cases, into
science and arts groups has been evident fo many years. C. P. Snow's Two Cultures are discernible long before the Second Law Thermodynamics becomes a matte
discussion, with A-level students encouraged to view those whose interests lie
French literature or History as in French literature or History as oped that a broader view could mave dmissible, but when a friendly scien b admissibie, but when a friendly ycience asked for his opinion, he said, "Well, they are, aren't they?"
School is surely not meant to be a training round for either tradesmen or rofessionals, but for people. The first aim of
6 -plus schooling must obviously reparation for a university training, sixteen-year-old ought not to have his sensitivity so blocked with a mass of
analysis that he cannot also perceive the pleasures of learning about life. Nor should he be allowed to finish his education on a
diet of arts alone; no-one should be excluded diet of arts alone; no-one should be excl
from the excitement of science. But the If alance must be preserved.
If H . Wells is to be If H. G. Wells is to be believed, human between education and catastrophe.

Digital capacitance meter

Six ranges of 200 pF to $20 \mu \mathrm{~F}$ full-scale

by Adrian Ryan, (G3VJN)

The article describes the design and construction of a $31 / 2$ digit
of 199.9 pF to $19.99 \mu \mathrm{~F}$ full-scale. The maximum error of the instrument is $\pm 1 \%$, determined by the accuracy o Accuracy is largely unaffected by voltage or temperature variations, making battery power practicable. No precision components are used in the design, maximum advantage being
taken of digital c.m.o.s. integrate circuits to render the use of precision components unnecessary.

A recent project required the selection Af numerous values of resistance and ing this chore that the contrast was made between the ease and simplicity of selecting resistors with the aid of a
$31 / 2$-digit digital multimeter, and the edium of using an LCR bridge to select capacitors. I therefore investigated the
possibility of designing an instrument to measure capacitance with comparable accuracy and ease of operation to tha of my d.m.m.

Design considerations

The heart of the instrument is shown in Fig. 1. If a positive-going edge is applied simultaneously to one input of a 2-input NAND gate, and, via a series CR net work to an inverting Schmitt trigger input of the gate, then the output from the gate will be a negative-going pulse whose width is directly proportional to he time constant $R_{\text {RANGE }}\left(C_{X}+{ }_{\text {Stray }}\right.$ If this pulse is used to gate the input of a priate values for $R_{\text {RANGE }}$ and the counte input frequency, the final accumulated count can be made to exactly represent he numerical value of $C_{x}+C_{\text {stray }}$. resistors for each range, only two range resistors are used, the intermediate

1.O lie of te meat the capacitance.

Fig. 2. Circuit to eliminate the effects of stray capacitance. Clock pulses are inhibited for a time corresponding to the value of the strays.
teps being effected by successively dividing the gated output of the maste clock by 10 for ranges 2 and 5 , and by 100 for ranges 3 and 6 . With the sample period chosen (approximately 1 second capacitors up to about $5 \mu \mathrm{~F}$. However for larger values there is insufficient time to discharge the capacitor com pletely before the arrival of the nex charge the capacitor rapidly via the current-limiting resistor R_{7}. The transistor is turned on by the inverted SAMPLE CLK obtained from the output of $\mathrm{IC}_{2 \mathrm{~d}}$. The transistor used must have a being suitable.
The above scheme will be satisfactory for all values of capacitors for whic $\mathrm{C}_{\text {stray }}$ can be neglected,' but the offset produced by the presence of this stray
capacitance will become increasingly nconvenient as C_{x} is reduced. I chose to eliminate the effects of $C_{\text {stray }}$ by the arrangement shown in Fig. 2. Here much the same circuit used to generate the gate pulse is used, the difference inhibit a certain number of periods of the master clock. By varying the 'set ero' potentiometer, the offset suppres on pulse can be made to cancel the cero error pr
The success of the instrument will greatly depend on its stability in the ace of varying supply voltages and temperature, and in this regard, th 74 C 14 or RCA CD40106 is ideal. The hreshold voltages at which switchin ccurs are defined by the ratio of the n-chip resistors. Thus, these switchin hresholds will always be a fixed per since the resistors are fabricated at the ame time, whilst their own absolute emperature coefficient may be large he temperature coefficient of their atio will be very small $1 .{ }^{1.2}$. The other master oscillator, and the design chosen is that of a conventional Hartley scillator, using a re-wound 455 kHz ransistor radio i.f. transformer. Wit should be encountered with any norma production 2 N 3819 f.e.t. It is a charac teristic of well designed LC oscillators

Werts worl APBU1 1980
that the output frequency is relatively insensitive to supply voltage changes, voltage from 7 to 13 V caused the frequency to change from 898.990 kHz at 7 V to 898.630 kHz at 13 V . Over the ${ }_{7-9.6 \mathrm{~V}}$ the frequency change amounted $7-9.0 \vee$, the frequency change amounted to 0.25%. Temperature compensation
of the oscillator is achieved by using a polystyrene capacitor, since with the usual ferrite cores used for i.f. transformers, this type of capacitor provides a complementary effect, resulting in a low nett temperature coefficient. For from 881.752 kHz at $+36^{\circ} \mathrm{C}$ to 880.466 kHz at $+3^{\circ} \mathrm{C}$, giving a change of $\pm 0.073 \%$, referred to $20^{\circ} \mathrm{C}$.

Circuit operation

Turning now to the complete circuit diagram in Fig. 3, it will be seen that the counter used is the Motorola MC14553. This 16 -pin, 3 -digit b.c.d. counter with an internal digit multiplexer is an excounting applications. The counter b.c.d. output is decoded by IC_{6} to pro vide a 7 -segment display format. The requisite current limiting resistors are incluaded in IC_{g}, 1,2 , and 3 are multiplexed, the appropriate digit being turned on via $\mathrm{Tr}_{6}, \mathrm{Tr}_{5}$ and Tr_{4} in response to the digit-selection pulses from IC_{5}. Digit 4 is continuously play either a blank or 1 .
To explain the operation, assume that the unit is switched to Range 2 which has a full scale reading of 1999 pF . In addition, assume that only a smal ment terminals, for example, 500 pF . The last overflow/clear (OF-CLR) pulse will have reset $\mathrm{IC}_{7 \mathrm{a}}$, and at the end of the gate period, only 500 periods of the master clock will have been counted,
thus no carry out (CO) pulse will have been generated and IC_{7} a will remain in the reset state. The termination of the gate pulse will generate the latch-
enable (LE) pulse, which will transfer enable (LE) pulse, which will transfe the contents of the decade counters to positive edge of LE will, in turn generate a $10 \mu \mathrm{Sec}$ strobe pulse from $\mathrm{IC}_{7 \mathrm{~b}}$ which will store the current state of IC $_{7}$ in the digit 4 latch, $\mathrm{IC}_{8 \mathrm{a}}$ In this example 0 , consequently Tr_{7} will be turned off and digit 4 will be blank.
Assume now that the capacitor con nected to the input terminals is in creased to 1200 pF . The negative going counter, and after 1000 periods of the master clock a CO pulse will occur. This pulse will set $\mathrm{IC}_{7 \mathrm{a}}$, and after a further 200 periods of the master clock, the gate period will terminate, generating LE decade counters to the output latches. The positive edge of LE will generate
the transfer strobe, and the state of $\mathrm{IC}_{8 \mathrm{a}}$ will become 1. Transistor Tr_{7} will turn If and digit 4 will display the figure 1 . erminals is too large, the first CO from IC_{5} will set $\mathrm{IC}_{7 \mathrm{a}}$ as before, but the second CO will cause $\mathrm{IC}_{8 b}$ to be set. The resulting 1 level on its Q output is used on the Q output is used to inhibit the display driver IC_{6} via its blanking input (BI) terminal. Thus the over-range indication is provided by the display blinking on for 2,20 , or 200 msec , depending

Power requirements

The choice of supply voltage for the unit was not entirely arbitrary, but was dictated by maximum count-rate coniderations of the MC14553. I have used this device for a number of counting samples from many sources. The majority of these i.cs, whilst meeting their guaranteed specifications, have had maximum counting rates. which "tye somewhat lower than the "typical" figures given in the data
sheet ${ }^{3}$. Accordingly, to avoid the need to select devices, a supply voltage was chosen that would ensure sufficient speed margin, even with both a worstcase counter and a worst-case threshold votage for the Schmitt trigger. In my nickel-cadmium battery pack, simply because it was available. However, this would be difficult to justify in general, since both the current drain and the sideration should therefore be given to using a normal 9 V dry battery, such as the PP9. Whilst on the subject of power supplies, it is worth noting that certain the unit is mains powered The input imper'ance on ranges 1 to 3 is very high - $10 . \pi \Omega$ - making the instrument sensitive to hum pick-up. The effect is mainly to be observed on Range 1, as battery power, since hum pick-up affects both input terminals equally, it appears as a common-mode voltage and is rejected. Therefore, unless one is prepared to go to the trouble of proply battery power is recommended In my case, since the mains transformer had insufficient capacity to re-charge the battery pack and power the unit, a mains socket was chosen with an integral swithe electronics module during recharging.

Construction

The unit is constructed on two $8 \mathrm{~cm} \times$ 10 cm printed-circuit boards with a shielding plate interposed. The plate measure, and may not be required in all cases. It will be noted that no precision components are called for in the design,

Components Lis

Integrated circuits

IC, National Semiconductor 74C14 or RCA ${ }^{1 C} C_{2}$ CD4011.
$\mathrm{IC}_{3} \mathrm{IC}_{3}$ CD4017.
IC_{5} Motorola MC 14553 .
IC $_{5}$ Motorora MMC
$\mathrm{IC}_{6} \mathrm{CD} 4511$.
$\mathrm{IC}_{6} \mathrm{IC}_{8} \mathrm{CD} 4013$
iCs integrated resistor package; Beckman 899

Resistors

$D_{1} D_{2} D_{3} 1 N 4148$, or equivalent.
D. Red I.e.d.
Displays, 4 off, Hewlett-Packard HP-5082 7740 common-cathode.

Transistors

$\operatorname{Tr}_{1} 2 \mathrm{~N} 3819$.

inductor
L, $83.5 \mu \mathrm{H}, 100$ turns, tapped 30 turns from ground end, wound on striped 455 kHz ex-
transistor radio i.f. transformer core, with transistor radio i.f. .transformer
internal tuning capacitor removed.

Switches

$\mathrm{Sw}, 4$-pole, 6 -way, make-before-break
Sw, 4-pole, 6-way, make
Sw_{2} power switch. See text.
Sw Sw_{3} single-pole, integral with mains power
socket See text.

Transforme
Tr $12-12 \mathrm{~V} 100 \mathrm{~mA}$ 220V primary

$\mathrm{R}_{1} \mathrm{R}_{14} 1 \mathrm{M}$. $R_{2} R_{3} R_{9} R_{10} R_{21} R_{22} 100 k$. $\mathrm{R}_{4} 3.3 \mathrm{M}$ high stability. $\mathrm{R}_{5} 5.6 \mathrm{M}$ high stability. $\mathrm{R}_{6} 10 \mathrm{k}$ high stability. $\begin{array}{lllll}\mathrm{R}_{7} & \mathrm{R}_{19} & \mathrm{R}_{20} & \mathrm{R}_{25} & 2.2 \mathrm{k} \text {. } \\ & & \end{array}$ $\mathrm{R}_{8} 150 \mathrm{k}$ $\mathrm{R}_{11} 180 \mathrm{k}$ high stability. $\mathrm{R}_{12} 3.3 \mathrm{k}$. $\mathrm{R}_{1,} 560 \mathrm{k}$ $\begin{array}{lll}\mathrm{R}_{15} & \mathrm{R}_{16} & \mathrm{R}_{17} 8.2 \mathrm{k} .\end{array}$ $\mathrm{R}_{18} \mathrm{R}_{26} 1.2 \mathrm{k}$. $\mathrm{R}_{23} \mathrm{R}_{24} 470$ $\mathrm{R}_{22} 220,2 \mathrm{~W}$. $\mathrm{R}_{28} 2.2 \mathrm{M}, 15$ turn cermet. $\mathrm{R}_{29} 1 \mathrm{M}, 15$ turn cermet. Sternice Capacitors $\mathrm{C}_{1} \mathrm{C}_{7} 0.47 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum. $\mathrm{C}_{2} \mathrm{C}_{3} \mathrm{C}_{2} \quad \mathrm{C}_{10} 100 \mathrm{pF}$ polystyren $\mathrm{C}_{5} 470 \mathrm{pF}$ polystyrene. $\mathrm{C}_{6} \mathrm{C}_{9} 10 \mathrm{pF}$ ceramic. $\mathrm{C}_{8} 390 \mathrm{pF}$ polystyrene. $\mathrm{C}_{11} \mathrm{C}_{12} 150 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum. $\mathrm{C}_{13} 1.8 \mathrm{nF}$ disc ceramic.	

Diodes and displays

T93YA.
$\mathrm{R}_{29} 1 \mathrm{M}, 15$ turn cermet. Sternice type T93YA.

C, C 0.47 uF 16 V tantalum

$\mathrm{C}_{6} \mathrm{C}_{5} 10 \mathrm{pF}$ ceramic
$\mathrm{C}_{11} \mathrm{C}_{12} 150 \mu \mathrm{~F} 16 \mathrm{~V}$ tantalum.

only good quality, high-stability, metal${ }_{\text {film resistors for }} \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{R}_{6}$, and R_{11}, and It should be noted that the connexion from the input terminals to the p.c. in with the wiring loom. Otherwise construction is uncritical
Calibration and use
The unit may be calibrated as follows. Apply power, short TP_{1} to ground, and R_{28} to mid-travel, and R_{29} to minimum resistance. Select Range 4, and with a $0.1 \mu \mathrm{~F}, 1 \%$ capacitor connected to the
input terminals, carefully adjust the
 quality components. If the instrument displays anomalous readings between ranges 3 and 4 , this would indicate
very leaky component. For example, if nominal 1800 pF capacitor displays correctly on Range 4, but shows as over range on Range 3 , this would be cause for regarding the component with con siderable suspicion

Modifications

After the instrument had been in use for some time, it was noted that it would always stabilize within about a second
This prompted me to replace the power switch with a three-position, centre-off

Fig. 4. General timing diagram.

type, with a locking action on one side give a push-to-read facility and continuous-read position. This modification has greatly extended the time between recharges, and would similarly
benefit ordinary dry-cell operation. A second possible modification could be made by those who need to extend the maximum range of the instrument, at the expense of losing the minimum
range of 199.9pF. The modification consists of replacing $\mathrm{R}_{28}, \mathrm{R}_{4}$, and R_{5} with the next-lower-decade values, at the same time changing $\mathrm{R}_{29}, \mathrm{R}_{11}$ and naturally, R_{6} with their next-lower decade values. This would have the effect of making
Range 1 1999pF and Range 6 199.9uF. Note that the non-zero output resistance of $\mathrm{IC}_{1 \mathrm{~b}}$ will artificially lengthen the time constant and must be allowed for. The average output resistance of 15
samples of this i.c. was found to be 260Ω ranging from 210Ω to 303Ω. In addition, it was observed that the output resistance was not constant with load, tending to increase as the load increased. For one sample the output resistance
was found to remain constant for load resistances down to $10 \mathrm{k} \Omega$, and to have increased to 281Ω from its initial value of 244Ω for a load of $1 \mathrm{k} \Omega$. Buffering the output of $\mathrm{IC}_{1 \mathrm{~b}}$ with a fast voltage fol-
lower would eliminate the problem. The unit has now been in operatio for several months, and no drift has been observed in the displayed values of the calibration standards used to calibpower, the observed values of display jitter amount to $\pm 0.7 \mathrm{pF}$ for Range 1 and the usual ± 1 count in the leastsignificant digit position for all other ranges. The instrument has been tem100 nF capacitor at room Range 4 with

the reading at $+40^{\circ} \mathrm{C}$ was -0.7%, monstrating the was $+0.7 \%$, thus deinstrument. With the push-to-read modification incorporated, the unit has of operation, and along with the ohms range of my digital multimeter has virtually replaced the LCR bridge. Now, fionly there was a convenient analogue of inductance

eferences

1. MM54C14/MM74C14 Data sheet. 2. National Semiconductor Application Note
AN-140 "CMOS Schmitt Trigger - A Uni-AN-140 "CMOSS Schmitt Trigger - A Uni-
quely Versatile Design Component."
2. Vol. 5 , Series A. McMOS Vol. 5, Series A.McM
Circuits, pps. 7-288/7-293.

Printed circuit boards A set of two single-sided p.c. bs is is available for A set of two single-sided p.c. bs is available for
$£ 7.50$ inclusive of v.a.t. and UK postage from
M. R. Sagin at 23 Keyes Road. London NW2.

Marconi and

Airbus

Airbus Industrie has chosen a proposal by Marconi Avionics and the German firm of Liebherr Aerotechnik for the
microprocessor control of flaps and microprocessor control of flaps and
slats on the new Airbus A310 The system is to provide a high degree of safety (slats and flaps are used in the takeof and landing phases of a flight) by self monitoring, by the use of two separate
systems of different type and by the systems of different type and by the autonomy in operation to avoid the effects of crew error. Should a crew member attempt, for example, to clos he leading-edge slats at too low a flaps at too high an airspeed, the con rols will prevent the command being carried out.
The microprocessors used are the 6800 and 8085 , one being used to contro monitoring function. Different designs are used in the expectation that a soft ware fault would not affect each in the Mare way.
Marconi are now very experienced in plied the system for Concorde and the highly-automatic system for the aban

How serious is multipath distortion?

Effect on sound quality and bit-streams in broadcast reception
by Pat Hawker, Independent Broadcasting Authority

According to one broadcaster, multipath distortion is "one of the major factors" which deteriorate received sound quality in v.h.f./f.m broadcasting. Yet, says the author, it has had relatively little investigation in the UK for over twenty years. article discusses its effects and prevalence in both conventional broadcasting and systems using digital information; outlines a recent Japanese analysis of how it affects stereo reception; and finally anything, to minimise the problem

In introducing his article "Audible amplifier distortion is not a mystery" (Wireless World, November 1977) Peter Baxandall quoted Bertrand Russell: "Some things are believed because people feel as if they must be true, and in evidence is necessary to dispel the belief." He showed that much of the advice given to would-be high-fidelity enthusiasts was (still is?) misleading; that popular sout to perpetuate myths equipment sought to perpetuate myths series of wilder and yet wilder pseudoscientific hypotheses", and that the public is being encouraged to "detect" (and sometimes contradict) objective engineering measurements; with some magazine reviewers showing much concern about levels of distortion that can be detected (if at all) only by the But is there not another anomaly in what is sometimes referred to as the great hi-fi-con? Serious and detectable forms of distortion go unmentioned, either because they are difficult to cause the whole subject may still be surrounded by uncertainty, may differ according to particular circumstances, or may be contrany that, otherwise, may be highly desirable trends.
sound broadcasting, mono, stereo and (potentially) 'surround sound' is a notable example.
Broadcast engineers for over a quarter-century have recognised that, f.m. offers great advantages over m.f./
m. in terms of full audio bandwidth (up to 15 kHz), in much increased reduced need for compression) and in eduction of the co-channel inter erence that plagues European m. disappointment that the public con tinues to rely so much on m.f. transmissions: a BBC survey only a few year ago indicated that at any given time 86 per cent of the audience were listening
on m.f./l.f. compared with 14 per cent on v.h.f.f./f.m. - even although a far higher percentage were equipped with v.h.f./f.m. receivers.

Public bodies, including the Crawfor Committee (1974) and the Annan Com hat listeners should be encouraged t use v.h.f./f.m.; the IBA in setting up independent local radio services put "as a back-up service", implying that he day is anticipated when the vast majority of listeners will use v.h.f./f.m rather more cynically (or realistically? the programme companies tend to con medium wavelengths nerium wavelen
obliged to attempt to induce thus public to make more use of v.h.f./f.m. Th nany advantages, rather than the fe mphasis has been put on multipath distortion, although the problem has been recognised for more than 20 years.

Effects of multipath
or the listener multipath distortio may pass unnoticed on receivers limited audio bandwidth but on high quality installations may vary from jus higher audio notes. While often compa ratively difficult to detect subjectively on orchestral music, it can be observed on sustained notes and solo instru nents; notably on solo piano or classical paper" effect produced by an off-centr oudspeaker speech coil; it can als cause distortion of sibilants and indee any loud high-frequency audio com organisation, NHK, has recently stated categorically that for v.h.f./f.m. stereo it is one of the major factors which de
riorate the received sound quality though noting that for many years it haracteristics were not determined nalysis by conventional methods.

How common is multipath
There is very little doubt that multipath onditions are responsible for a ver roadcast transmissions received high quality equipment. Multipath distortion is due to the simultaneou pick-up of direct and reflected signals, and is the counterpart of the well known "ghosting on television; how ever, unike ty ghosting its effect may nor can its effects be readily mitigate by adjusting the aerial while watching he picture.
It is brought about by reflection from tall buildings, hills, mountains, ga similar high structures and may var easonally or over a period by change folage, helly buing wolt the ike. Generally long-term multipath on Band II ($88-97.5 \mathrm{MHz}$) than on u.h.f elevision Bands IV, V. Over the years, here has been an increase rather than decrease in multipath conditions, partiamount of high-rise building.
There appears to have been relativel There appears to have been relatively distortion in the UK for over twent years. Soon after the BBC began regula
v.h.f.ff.m. broadcasting from Wrotham in May 1955, unexpected reports of poor quality began to arrive and engineers a he BBC's research centre at Kingswoo Varren began an investigation ${ }^{1,2}$. It was soon discovered that the problem stem
med from multipath propagation and special measuring technique was deve loped using an oscilloscope display as in Fig. 1. In the absence of a reflected Whal a horizontal trace is obtained phase difference and hence the result ant amplitude varies with instant aneous frequency; such a display pro vides an indication not only of the ratio lso the path difference between th signals.
The investigations, at a large number
cceiv，showed that even on standard east＂just noticeable distortion＂was not observed when using indoor aerials distortion could be minimised by en－
suring that the a．m．suppression cha－ racteristics of the receivers were good and by the use of outside aerials．
It was also shown that distortion in path length（long－term echoes）in in path length（long－term echoes）in signal compared with the direct signal needed to produce＂slightly disturbing＂ distortion on solo piano was found to be five miles，but only 6 per cent for a path difference of 18 miles．These investiga ions（before the advent of stereo）wer of course confined to monophonic While the
tions were released to set makers and the technical press，the work appears to have been allowed to lapse；perhaps on he traditional broadcasters＇argument that＂t
Recently NHK have released some details of an analysis made of multipath distortion in stereophonic reception ${ }^{3}$ ．It suggested that although distortio he major factors causing degradation f broadcast sound，its characteristic have not previously been determined because of the difficulty of analysis by Thentional methods
he relationship between the audio distortion and the relevant multipath arameters using electronic computa on to which fast Fourier transform processing was applied．＂In this way，＂

Fig．1．Measuring equipment used by BBC in 1950 for investigating the extent of multipath reception of v．h．f．／f．m．transmissions

Fig．2．Type of display obtained using the equipment of Fig． 1 （a）Idealised display
in which the ratio of the amplitudes of th direct（D）and indirect（U）signa／s is epresented by a／b and their path requency separation in $k H z$ were f is th adjacent maxima of the trace．（b）Disp obtained at a typical site using a correctly oriented dipole．（c）Trace at the same site
using a 4－element using a 4－element Yagi aerial indicating considerable reduction in the amplitude
of the reflected signal compared with the direct signal．
computation was easily performed and extensive analysis of the distortion was made possible，providing a clear under Some of the results obtained fo stereo reception are tha
1．The distortion tends to be pro－ nounced if the delay time of the reflected undesired signal（U）with res comparatively long（thus confirming the BBC experience）．
2．The distortion is almost inversely proportional to the D／U ratio if this rex
3．The phase difference which gives maximum or minimum distortion is not constant but varies with such parameters as delay time，modulation

frequency and depth of modulation． 4．Maximum distortion at 15 kHz is greater than at lower audio frequencies， 1 kHz ．
Fig． 3 shows a computed example of the spectrum distribution of the dis－ torted output signals at 15 kHz modula－ tion．Fig． 4 shows the relationship bet－
ween the required D / U ratio and delay time for various parameters of maxi－ mum distortion（at 15 kHz ）．This shows clearly that high values of D／U ratio are needed to ensure good sound quality in situations where multipath propagation
exist．Indeed the 20 －year－old BBC in－ vestigation，and more recent IBA in－ vestigations of multipath on u．h．f． suggasst in relation to teletext reception， suggest that such high D／U ratios are
seldom found unless great care is taken in aerial installation． Work on digital systems，which are susceptible to both short－term and long－term echoes，has underlined the
unsuspected extent of multipath，even unsuspected extent of multipath，even can be used．For example IBA surveys showed that 86 per cent of pictures checked in homes in the Hebden Bridge service area and 79 per cent in the Abergavenny service area had visible
ghosting；perhaps more significantly it showed that in those situations where multipath was sufficiently bad to cause teletext failures，it was not possible to recover the situation simply by
swinging or re－adjusting the within the limitations imposed by the space available on a chimney stack ${ }^{4}$ ． BBC experiments on multiplexed digital sound carried out at Pontop Pike tion quality was very good in many areas，there were a disturbing number of＇black spots＇where the bit－stream was seriously corrupted by multipath． The extent of this problem seems to eers who have come to have enormous faith in digital techniques，although less

IRELESS WORLD，APRIL 1980
urprising to those who have long been primarily because of multipath，can be eliably achieved on h．f．radio circuits． Sir James Redmond，when BBC irector of Engineering，is on record ${ }^{\text {a }}$ xperiments have shown that in heav－ ily built－up areas，there are reception problems due to multipath propagation as indeed there are with existing f．m transmissions．We shall probably ，
to try other forms of modulation．＂
The BBC appears to have considere using multiplexed radio channels on a wideband f．m．bearer as a furthe Iternative means of carrying a stream of separate radio network transmissions Such systems，it is claimed，would offer a unique opportunity to make radio reception simple and reliable． While this may well be the case，we fore committing the UK to a third sys tem of radio while still having to maintain m．f．／a．m．and v．h．f．／f．m．sys tems．
The investigation by the IBA of the fect of multipath on teletext errors led Peter Hutt to express the opinion ${ }^{5}$ tha not a satisfactory one for reasons that are not clearly understood．Whereas the accepted＂model＂indicates that a u．h．f probability of expected to have equal additive or subtractive effect of the reflected signal）across the bandwidth of the vision signal，in fact there appears to exist a strong propensity for colou A similar puzzle has arisen in Ameri can investigations into the use of circu lar polarisation for television as well a sound transmissions．Circular polarisa tion provides an effective method of
discriminating against reflected signals since，on reflection，the sense of polari sation is changed．In other words the transmitted＇left－hand＇（anti－clockwise） signals become，on a single reflection
＇right－hand＇circular Clearly circular polarised transmitting and receiving aerials provide an effective method of reducing multipath distortion．How ever，very few listeners have circularly polarised aerials but receive the signals potential 3dB in the process）．
The American tv investigations，such as that carried out by Jampro at KLOC－TV，California，${ }^{\text {i }}$ suggest that ghosting is reduced on circularly of reception．While circular polarisation is used on virtually all of the IBA＇s ILR transmitters，no investigations have been made to ascertain whether or not similar manner while it is difficult to see any theoretical basis for the Ameri－ can findings，it may well be because of the rotation of the plane of polarisation where the signals bult－up areas and

Table 1．Investigations by BBC in （Typical sites 1950s indoor ae
indes
houses
rials－private

Fig． 4 （left）．Relation between required

 IU ratio（desired signal／undesiredsignal）and delay time（path difference） ignal）and delay time（path difference） calculated by NHK．
networks of v f／fm upper limit of audio frequencies，the normally set by the＂music lines＂of the Post Office distribution circuits；this meant that audio frequencies much above 7 kHz could not be guaranteed． in handling stereo over distances ex－ ceeding about $50-75$ miles．However，in recent years the BBC has introduced its p．c．m．digital transmission system which provides high－quality stereo up the same time，the ILR stations are able to provide good quality stereo since the rransmitters are seldom more than a few miles from the originating studios． rather than decreased the importance of multipath distortion． The current work by both IBA and BBC ，to evaluate various matrix sys－ tems of＇surround－sound＇such as MSC
and HJ，using＂ 2 ＂，＇ $21 / 2$＂or＂ 3 ＂trans－ and HJ，using＂ 2 ＂，＂ $21 / 2$＂or＂ 3 ＂trans－ to have included any practical assess－ ment of the effects of multipath on the different systems，although IBA engin－ eers are hoping to undertake a study shortly in connection with the MSC
（Mono－Stereo－Compatible）system． The possibility of using char coupled－device delay lines to reduce ghosting on television pictures has been reported ${ }^{9}$ but little thought appears to techniques could be usefully applied to v．h．f．／f．m．reception．

Minimising multipath distortion Multipath propagation of v．h．f．signals by installing good outdoor aerials of reasonable directivity the listener would often be unlikely to reduce long－ B
direct circular polarised signals could be expected to be received on average better，and this may be more important than any corresponding improvement signals，though there appears to be no experimental evidence to support this． Surveys of the advantages of circularly polarised aerials for v．h．f．／f．m．trans－ mission appear，like so much else wit－ look this question
When the BBC set up its national

 mental这

$$
1
$$

Fig．3．NHK－computed example of spectrum distribution．The DIU ratio is
20dB；delay time 10us；modulation－left signal， $15 \mathrm{kHz}, 100 \%$ ；maximum distortion 5.6%（when 180% ，and
minimum distortion 4%（when 90° or minimum
270% ．
1 1

位

 －位path echoes to the extent suggested as desirable by the NHK calculations.
There are severe practical problems even in attempting to reduce the strength of reflected signals by physical adjustment of the aerial.
The BBC in its otherwise very useful booklet "How to get the best out of stereo radio" (July 1977) has a para-
graph devoted to multipath ("distortion of sibilants or other high-pitched loud signals" page 10) which suggests: "The
directional properties of a carefully directional properties of a carefully positioned multi-element aerial can
often be used to reduce the pick-up of the reflected signals and thus reduce or eliminate the distortion. The best position of the aerial will normally be the one giving the best ratio between the wanted and the reflected signal - this is maximum pick-up. The optimum position can be found by moving the aerial in an arc of about 30 degrees either side of the maximum signal position and selecting the position within this arc
which gives the best listening result." This, if with respect one may say so, is not so helpful as it may appear. One has the image of a quality conscious listener nipping up to his roof to adjust his possibly large directional outdoor for the broadcast of a long piano solo with plenty of high-frequency notes. Life is just not like that. The aerial will almost certainly have been installed
(carefully perhaps if not by a rooftop (carefully perhaps if not by a rooftop
cowboy) and checked to ensure that it provides sufficient signal on all chanimagine the installer being in any position to cope with multipath distortion except of the most gross kind. Unlike even test cards to guide him. If he tests the installation and detects distortion there is no guarantee that he will identify it as multipath distortion but is
more likely to ascribe it to the equipment. In bad multipath areas, television investigations suggest that simply swinging the aerial a little way off beam may slightly reduce, but will almost signal. Furthermore it is in those conditions (where maximum pick-up of signal does not coincide with optimum D/U ratios) that there is most likely to be significant differences between the
different channels. Indeed a simple test to identify distortion as being due to multipath is often to switch between channels and note whether the distortion disappears!
The original BBC investigations highlighted the importance of the a.m.
suppression characteristics of the receiver/tuner and the need to have a "balance" or "a.m. rejection" adjustHowever even this may prove unsatis. factory, particularly as such adjustments and measurements are most likely to be carried out with a signal generator modulated with 400 Hz tone
which in conjunction with the timeconstants of the receiver limiters may indicate a degree of a.m. suppression 15 kHz . What
high, outdoor aerials and good a.m. suppression can result in a very worth-
while improvement. We could try to while improvement. We could try to structures should be discouraged (unless needed to support the transmitting aerials!) but even that will not remove mountains. Multipath is going
to remain a problem - but do we not need more awareness of its impact, more knowledge of its practical effects, more thought on whether it could be reduced by more use of circular polarisation? Or shall we just continue to that v.h.f./f.f.m. can always or usually provide high fidelity reception? Or regard the present system as obsolescent and direct our thoughts to
alternative modes of transmission such alternative modes of transmission such
as multiplexed wide-band f.m., or digital systems, or direct broadcasting from satellite at frequencies of the order of
$1-2 \mathrm{GHz}$? -2 GHz ?

References

1. BBC Research Department investigations into multipath distortion, 1956 (apparently
unpubbished but circulated to set makers and technical/ trade press).
2. Patrick Halliday. "Reducing FM Multipath 3. "Analysis of Multipath Distortion in FM Sound Broadcasting," NHK Technical Research Laboratories, June 1979 .
3. L. A. Sherry. "A summary of ORACLE trials", Teletext Transmission Working Group Note 51, IBA 78.
4. P. R. Hutt. "The Fundamentals of Teletext
Transmission", IBA 1977. 6. J. Redmond. "Broadcasting: the developin 1979. See also Wireless World December 1979. See
197, p. 52.
5.
6. "Test results comparing circular with
horizontal polarisation in u.h.f. tv broadcashorizontal polarisation in u.h.f. tv broadca
ting ${ }^{\prime}$, Jampro Antenna Company, 1976. ting", Jampro Antenna Company, 1976 .
7. J. Ryan. "A new circularly polarised f.m broadcasting aerial for Band III', IBC 1968,
IEE Conference Publication No 46 , Part 1 IEE Conference Publication No 46, Part 1 . "Application of charge-coupled device for cancellation of tv ghost signals", NHK Laboratories Note No 226, May 1978. 2-2.

Literature Received

Course book and cassette with several procoms contain a training programme for on Strathclyde BASIC and the Commodore writte microcomputer. The course book was grinized. Course Andrew Colin and is well or Business Machines (UK) Ltd, 818 Leigh Road Trading Estate, Slough, Berks.
Load cells made by Hottinger Baldwin are for rated between 500 g and 20 tons. Cells are the U1; U1-V and Z3H, in the accuracy classes 0.1 and 0.3 A A leaflet can be obtained
from HBM, Stonefield Way, Ruislip,
Middlesex.

A leaflet on the range of Robnorganic mixing used in the electronic industry is obtainable from Robnorganic Systems Ltd, Highworth Road, South Marston, Swindon, Wilts. SN3
4TE.

Hewlett-Packard will run several training courses during 1980 on gas and liquid chro centres used. A brochure describing the courses can be had from H-P at King Street Lane, Winnersh, Wokingham, Berks. RG1
WAR.

Short-form catalogue from B\&K describes in rather more complete manner than th tion and signal analysis equipment. Publica tion is available from B\&K Laboratories Ltd Cross Lances Road, Hounslow, Middx, TW3
WW4
WW4
Leaflets specifying the facilities for makin
raticules, diffraction gratings, grids an other precision photographic products are
obtainable from Opsec Ltd, Holywell Hill, S Albans, Herts.
A.
A.
A supplement to the ITT instrument catalo gue is available, containing information on among others, the Texas TM $990 / 189$ micro computer learning aid and Iwatsu
oscilloscopes. It can be obtained from ITT oscilloscopes. It can be obtained from ITT
Instrument Services, Edinburgh Way, Har-
low, Essex.

Bibliographies on the application of micro processors in engineering, in home and office, in science and medicine and in elec
trical engineering are published by the IEF trical engineering are published by the IEE at
prices ranging from $£ 6.50$ to $£ 10.00$. They are prices ranging from $£ 6.50$ te $£ 10.00$. They are
obtainable from the Marketing Department. The Institution of Electrical Engineers, Sta tion House
SG5 1RJ.
Products for the home constructor in the Vero range of prototype building aids are
selected for inclusion in the new Hobyist selected for inclusion in the new Hobbyis
catalogue, which is available at 40p by post catalogue, which is available at 40p by post
from Vero Electronics Ltd, Industrial Estate, from vero
Chanderectron's Ford, Eastleigh, Hants, SOS 3ZR. Theory and application of mixers is described in practical terms in a booklet which is struments, Burrington Way, Plymouth, De von PL5 3LZ.
Two publications from Plessey. Professiona Racio Applications covers design and appli
cation using the range of Plessey radio linear i.cs, including synthesizers. Also an abridged catalogue of all Plessey i.cs. Both obtainable
from Publicity Office from Publicity Office, Plessey Semiconduc
tors, Cheney Manor, Swindon, Wilts. SN2

Shared-memory colour-graphics visual display system

Teletext / Prestel-compatible unit interfaces with Z80 computer and colour TV set by S. J. Marchant, B.Sc., University of Nottingham

This article describes a design for a memory-mapped, colour-graphics visual display unit for use with a
microprocessor and a modified col TV set. Although the unit was designed to operate with a 280 and a modified 14 -in Sony portable TV, interface requirements are simple and other processors and television receivers.
5 V the unit operates with a supply of 5 V at 1 A and a 16 -bit address, eight-bit data, MREQ, RD and
signals. It generates R, \mathbf{G}, B black/white and sync. signals. The system appears to the processor as $4 \mathrm{~K} \times 8$ bits of static r.a.m. and presents one l.s. t.t.l. load to each on-board and the r.a.m. can be placed anywhere within a 64 K memory map. The circuit to modify the Sony TV, used as an interface between the TV and the main unit, is also described.

Functional block diagram of v.d.u. circuit board which operates with 1 6-bit WR signals from microprocessor

A memory-mapped display system is one in which the read/write memory for
the display is shared with a microprocessor; the memory is mapped into a particular slot of the microcomputer's address bus. The reasons for using memory-mapped visual displays stem from three main advantages or cursor control logic elements are not required
maximum display flexibility high-speed updating.
Offsetting these are two important disadvantages
driving soft
he memory device to the microprocessor apminal c.p.u./v.d.u. memory access competi c.p.u./.v.d.u. memory access competi-
tion causes glitches unless complex double buffering or cycle-stealing logic is included.
I overcame the first by writing a suitable package for the Z80 which makes the display appear as a terminal device. The software supports a cursor along
with all the usual ASCII control codes. Full cursor control is included plus many graphics and colour facilities which use 31 of the available 32 control p.r.o.m. and used just like an I/O device
driver routine. Table 1 lists the facilities included
The problem of glitches has been puts for a few microseconds while the processor takes control, the processor having highest priority. In this way up-dating results in a certain amount of flicker which is normally found acceptblem can be eliminated if writing to the display is restricted to line and frame blanking periods. This can be achieved by using the blanking output as a strobe
to the processor. Each line can be sensed via an I/O port and updating can only occur when this signal is active. Such polling can be built into the display software if required. The principal features of the unit, tions, are

- simple, flexible, low-cost, standard
components
microprocessor-compatible as $4 \mathrm{~K} \times 8$ bit static r am
-64×26 character display
- 128×104 graphics elements
- eight foreground colours

Table 1. Facilities included in driving softwaré

$\begin{aligned} & \text { Control } \\ & \text { Code } \end{aligned}$	Char.	Function Description		Contro Code	Char.	Function Description		
0	@	NULL	- routine returns carry set	16	P	BLA	- black	
1	A	DOT	- graphic dot at X, Y (next two characters)	17	-	Red	- red	
2	B	VCT	- vector from X, Y, to $X 1, Y 1$ (next 4 chars)	18	R	GRN		
3	c	CXY	- positions cursor to X, Y (next 2 chars)	19	s	YEL	- yellow	
4	D	BKG	- next colour control sets background	20		BLU	- blue	
5	F	STS	- erase to end of line ${ }^{\text {define colour status byte (next char) }}$	21 22	v	${ }_{\text {CYN }}^{\text {MAG }}$	- magenta	
7	G	bell	- externally generated tone	23	w	WHT	white	
8	H	BS	- cursor left	24	\times	PRT	- print page	o list device
9	1	tAB	- tabulate 8 cols	25	r	RGT	cursor righ	
10	J	LF	- cursor down	26	z	HOME	- cursor to h	me position
11	K	VT	- cursor up	27		ESC	- routine retu	rns cursor off, carry set
12	L	CLR	- clear screen	28		ini	re-initialize	
13	M	CR	- cursor to left-hand side	29				
14	N	BL	- blink	30		CON	- cursor on	
15	0	вLO	- blink off	31		COFF	- cursor off	

Fig. 1. Display logic converts 16 -bit data from memory array into colour signals.

Fig. 2. Memory array and management logic to interface array with microcomputer bus and display logic.

Circuit design and operation

A sync－generator chip is employed to generate a convenient fully interlacing，
combined sync．signal which is then

WIRELESS WORLD，APRIL 1980
used to drive the timing and addressing logic，although any external sync． purpose．Addressing logic provides dot and character clocking pulses at a rate determined by the astable oscillator． The frequency determines the width of the display．It also generates a four－bit line count which increments from zero to nine in the course of a character row，
together with a character column count （ 0 to 63 ）and character row count（ 0 to 25）．The row and column addresses are passed to the memory array via the memory array then passes the 16 －bit
data word to the display logic where it is interpreted by the character generators． tor is the 74 S 262 N which supports upper tor is the 74 S262N which supports upper
and lower－case English－style ASCII．It also caters for descenders within a $5 \times$ 10 dot format．The graphics generator contains a 7445 i．c．to decode the four－bit b．c．d．line count into a two－bit binary
graphic character cell count，and an graphic character cell count，and an
LS153 which selects the corresponding bit－pair from the memory word for dis－ play．The outputs from both generators are fed to the serializing shift register
via a two－way data selector，which passes the required data according to

WIRELESS WORLD，APRIL 1980
the state of the graphic flag bit 15．Bit 14 the flash flag，has the capability of black cell if it is section in favour of a the state of the flash rate low frequency clock which determines the flash frequency
The output from the serializer is used to select either foreground or back－ ground colour bits from a six－bit latch loaded from the six remaining data bits produced are buffered by an thus collector inverter ready for line trans－ mission to the modified TV set where the lines are terminated，buffered and fed to high bandwidth opto－isolators．
Isolation is necessary becaus Isolation is necessary because most
television sets have a live chassis．Fol－ lowing the isolators is another buffer and a high－voltage driver transistor operated in common base，the collector of which is parallelled onto the collector tors．See Figs 1,2 \＆ 3 for the．full circuit diagram．
Interfacing with the microprocessor The objective is to make the v．d．u． static r．a．m．，although internally the r．a．m．is arranged as 2 K words of 16 bits with each character represented by a
16 －bit word．Of the possible 2048 cha－ 16 －bit word．Of the possible 2048 cha－ racters only 64×26 are used owing to rows in a 625 －line raster（each character row takes 10 lines per frame）．A 16 －bit character word length stores the graphic／ASCII code，the three－bit oreground colour field，three－bit back－ graphic flag bits，see Table 2.
The display incorporates two cha－ racter generators，one alphanumeric and one graphic．Bits 0 to 7 are sent to both generators but the value of b_{15}

Table 2．A 16－bit character word length stores the graphic／ASCII code，
colour fields，flash and graphic flag bits．

b_{0}	b_{1}	3 lines
	b_{2}	b_{3}
	2 lines	
	b_{5}	2 lines
	b_{6}	b_{7}
3	3 lines	

and bits 0 to 7 dictate whether each picture 0 to 7 dicta
$10001000 \quad 111 \quad 001 \quad 10$ represents flashing white＂A＂on blue background
and $10011001 \quad 101 \quad 000 \quad 01$ represents a checkered graphic cell of magenta on black．
Photographs show examples of teletext displays finc／uding 24 characters reserved program），plotting facility from ＂shoot＂
Photographs by University photographic unit．

此 -7
-4
男目

The foreground and background colour bits determine the colour configuration of that character whether it be alpha－ numeric or graphic，and similarly the character is to blink whether or not the In the is to blink． ell is divided into eight character
$\begin{array}{lllllllll}b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7}\end{array}$
\square

This design does not incorporate width of such a device is insufficient fo his application．Consequently a perso nality circuit to interface the main uired．Direct interfacing to a TV，use with most teletext systems improve he legibility of the text but the problem of live－chassis sets makes it difficult to mplement．The common method achieving this is to use an isolating here employs opto－isolation to connect he R, G ，B signals（and an optional t．t． sync signal）combined with a v．h．f modulator to provide synchronization The scheme is illustrated in Fig． 4. The technique does not require an video output can therefore be super posed on the TV picture．If the set is tuned into the u．h．f．sync．output th picture is blank but synchronized to the v．d．u．and hence the display．If the v．d．u ransmission the display may be super－ posed over that picture．A t．t．l．opto－
with eight bits at a time，so the memory management logic maps all even ad－ dresses to character codes and odd ad－ dresses to status codes．As far as the defined by two bytes of data in conse－ cutive memory locations．
When the microprocessor accesses the display memory，the memory management logic will immediately
transfer control to the processor bus． The display logic is informed that its incoming data is invalid when the ＂glitch suppress＂line goes active．This causes a small blanking pulse to be set up and used to squelch any glitches that The memory management logic also responsible for making the $2 \mathrm{~K} \times 16$ memory array appear like a $4 \mathrm{~K} \times 8$ array to the bus．This is achieved via the which are activated alternately to pro－ vide the microprocessor with access to one or other half of the 16 bits of data． Address line A0 is used to determine
whether the microprocessor accesses whether the microprocessor accesses significant byte．

nterfacing the TV se

 olated sync channel is provided along

IV intertoce circuit

with the RGB isolation to provide extr flexibility should the u.h.f. link not be favoured.

Teletext and Prestel
compatability
Although the display format is not identical to that specified for Prestel/
teletext use, it is compatible. Under th control of a microprocessor, the display can be made to support most teletext / Prestel specifications, certainly th teletext interface for a Z80 computer system which uses the display system
most effectively with a 2 K -byte softmost effectively with a 2 K -byte soft ware package to complete this teletext
facility.

[^1] $\times 305 \mathrm{~mm}$.

Stephen Marchant, at 25 , is joining Nottingham University as manager of a new microprocessor applications
laboratory in the electronics department. Currently studying for a Ph. D. in the business application of microcomputers, he has designed and constructed many microprocessor-based projects which - he assures us
form the basis of future articles.

Guide to Broadcasting
 Stations

Many of our readers have been impatiently awaiting publication of the
new edition of this long-established new edition of this long-established
book and will consequently be glad to book and will consequently be glad to
learn that it is now available. This 18th edition is in the familiar format, listing
stations in the long, medium, shortwave stations in the long, medium, shortwave
and v.h.f. bands, in alphabetical order, by location and by frequency. There are
also sections on recievers aerials also sections on receivers, aerials, signal
propagation, station identification and propagation
reception reports.
reception reports.
The book costs $£ 3.25$, including postage and can be obtained from General Sales
Department Room CP34 Dorset House Department, Room CO A4, Dorset Hou
Stamford Street, VDON SE1 9LU.

Circuit analysis by small computer - 2

Programming and modelling techniques for common passive and active circuits by A. S. Beasley, B.Sc. McMichael Ltd

The previous article (February issue) showed how an n-port analysis be translated into a simple rote procedure, which is ideal for small computer circuit analysis.

This article briefly outlines a program based on the YF matrix and techniques required for accurate analysis of common active and passive circuits. Examples and case studies, including microwave oscillators, power amplifiers and
hybrid- π models, show that comp hybrid-T models, show that computer
breadboarding of circuits represents a useful and versatile tool for those engaged in electronics, industry, education and at home.

The computer program used throughout this article for circuit analysis is called Dirac. Dirac runs a Commodore Pet, which uses Basic, and occupies 14 K bytes of memory. (Earlier versions of Dirac could perform adequate circuit
analysis for under 5 K bytes. The current Dirac program is considerably more versatile than shown here.) The essence of the procedure that Dirac follows is shown below. Methodology for setting
up the YF matrix, the equations for up the YF matrix, the equations for its

calculation of the gains and impedances of a circuit were discussed in the previous article, so this article is confined lates the YF matrix. Dirac sets up two matrices, one is used to store the real part of the YF matrix and the other the imaginary part

	YR(0,0), $\operatorname{YR}(0,1), Y R(0,2)$, YR(1,0), YR(1,1),YR(1,2), YR(2,0),YR(2,1),YR(2,2),
	($\begin{aligned} & \mathrm{YI}(0,0), \mathrm{YI}(0,1), \mathrm{YI}(0,2), \\ & \mathrm{YI}(1,0) \mathrm{Y}(1,1), \mathrm{YI}(1,2), \\ & \mathrm{YI}(2,0), \mathrm{Y}(2,1) \mathrm{YI}(2,2), \\ & \ldots \ldots, \ldots \ldots, \ldots,\end{aligned}$

In setting up the YF matrix Dirac makes good use of the symmetry it possesses, this being greatest for passive comreal and imaginary parts and by always choosing that mode 0 represents the input and that node I represents the output and node 2 the common rail, the reduction of the YF matrix becomes a

FOR $\mathrm{X}=\mathrm{N}$ TO 3 ST
FOR P $=$ NTO 3 STEP -
FOR $P=O$ TO $X-1$
FOR $Q=O$ TO X -1
$A=Y R(X X)$
$\mathrm{A}=\mathrm{YR}(\mathrm{X}, \mathrm{X}) \uparrow 2+\mathrm{YI}(\mathrm{X}, \mathrm{X}) \uparrow 2$
$\mathrm{B}=\mathrm{YR}(\mathrm{P}, \mathrm{X}) * \mathrm{YR}(\mathrm{X}, \mathrm{Q})-$
$\mathrm{YI}(\mathrm{P}, \mathrm{X})^{*} \mathrm{YI}(\mathrm{X}, \mathrm{Q})$
$\mathrm{C}=\mathrm{YR}(\mathrm{X}, \mathrm{Q}) * \mathrm{YI}(\mathrm{P}, \mathrm{X})+\mathrm{YI}(\mathrm{X}, \mathrm{Q}) * \mathrm{YR}(\mathrm{P}, \mathrm{X})$ $\mathrm{YR}(\mathrm{P}, \mathrm{Q})=\underset{\mathrm{C}}{ } \mathrm{Y} \mathrm{YI}\left(\mathrm{Q}(\mathrm{Q})-\left(\mathrm{B}^{*} \mathrm{YR}\right) / \mathrm{AR}(\mathrm{X}, \mathrm{X})+\right.$
$\mathrm{YI}(\mathrm{P}, \mathrm{Q})=\mathrm{YI}(\mathrm{P}, \mathrm{O})-\left(\mathrm{C}^{*}\right.$
NEXT $\left.\cdot \mathrm{B}^{*} \mathrm{YI}(\mathrm{X}, \mathrm{X})\right) / \mathrm{A}$
This will parameters as $\left(\begin{array}{ll}\mathrm{YR}(0,0)+\mathrm{jYY}(0,0), & \mathrm{YR}(0,1)+\mathrm{jYI}(0,1) \\ \mathrm{YR}(1,0)+\mathrm{jYI}(1,0), & \mathrm{YR}(1,1)+\mathrm{jY(1)}\end{array}\right)$

Application of Table 1 of the previous article, now gives the gains and impedances of the circuit.

Modelling technique

Passive circuits are by and large straightforward to analyse, as are most narrow-band active circuits. However many common circuits require a more
subtle approach. Consider the variation

Parameter	Equation	Units
$g_{\text {m }}$	$35 \times 10^{-31}{ }_{E}(\mathrm{~A})$	
${ }_{50}$	$h_{\text {ie }}-h_{10} / g_{\text {m }}$	Ω
${ }^{\text {coib }}$		Ω
		Ω
$c_{\text {bo }}$		F
where f_{T} is the gain-bandwidth product and $V_{c E}$ is the voltage at which $C_{o b}$ was measured. The h parameters abre low frequency h parameters, and so are purely real numbers.		
of transistor parameters, oscillator and v.c.o. design and large signal design.		
Hybrid- π model		
The simple approach of using the y or h-parameters of a transistor as given on a data sheet, ignores the fact that these parameters themselves vary with frequency and bias conditions. The hybrid $-\pi$ model of a bipolar transistor, Fig. 1, provides a way of predicting the		

fig. 1. Hybrid-m transistor model can be used to advantage with computer analysis.
variation of these parameters, with the minimum of information, see Table What a hybrid- π model does is trad which is an excellent exchange for omputer analysis. Curves of Fig. show a comparison of measured two port values as a function of frequency as compared with the hybrid- π pre model of the bipolar transistor is good rom dc to 10 MHz , although variations

Using the YF matrix, from which we ultimately derive gains and impedances, the criterion for oscillation is best
viewed in terms of negative resistance. Referring to the diagram below oscillation occurs when $\mathrm{j} X+\mathrm{X}_{\mathrm{L}}=0$ and $R \geqslant R_{\mathrm{L}}$

As a more concrete example consider the upper inset diagram in Fig. 3. At 1400 MHz the circuit exhibits negative circuit would require frequencies the but at 1400 MHz the feedback is internal to this transistor. The base capacitor has been chosen to maximise the tion across a 50 ohm To produce oscillanetwork which transf one requires a resistance such that $R \leqslant-50$ ohms at the same time as tuning out the reactance $j X$. By choosing a high-Q network, reactance with fra rapid change of tion frequency will be well-defined lower inset of Fig. 3 shows such a network. The curve shows the predicted values of R and X, before and after the one would network is added. From it 1402 MHz . The circuit based on this design in fact produced 300 milliwatts at 1350 MHz , an error of 3%, but could be tuned from 1100 to 1400 MHz via the base capacitor.
A v.c.o. design would proceed along
similar lines parameter would be voltage controlled, and one would need to examine the input impedance as a function of this parameter as well as of frequency, for example by replacing the base capacitor Provided th
the most part in a linear fashion, and that non-linearities occur suddenly, e.g. the transistor being limited by the supcorrect. Power oscillators require a different model which is more akin to the power amplifier design dealt with next.

Power amplifier design

Large-signal design usually involves non-linear operation, e.g. classes no simple YF matrix to describe the circuit. For power amplifiers we have to limit the analysis to considering only how to get the drive power into the signal out into a load As on into a load.
f.e.t. operated at 100 W at 145 MHz . To use it one must power-match its output

WIRELESS WORLD. APRIL 1980

Fig. 2.
Fig. 2.
Comparison of
measured measured
parameters with valves predicted from hybrid π
model of Fig. 1.

to 50 ohms, see below. The inpu job, but the output match is the more

important of the two, as the higher power levels on the output can more matching. The model adopted assumes the output impedance of the f.e.t. is described by

where $P_{\text {out }}$ is the rated output power of the f.e.t. and C_{Ds} the drain-to-source capacitance. (The f.e.t. input impedance a network breadboarded on Dirac and the network finally used, the amplifier having 10 dB gain when run in class AB.

Economics of small computer

 analysisThe circuit in Fig. 5 shows a 3rd-order active filter, used as part of a subsystem in a satellite communication
system. The filter was designed system. The filter was designed and
checked using Dirac. Having verified the designed circuit would give the required response, the program was re-run using practical resistor and values had to be tried unis practical values had to be tried until an accept-
able response was obtained. The exercise in itself gives the engineer a feel for the network, and the relative sensitivity of cut-off frequency etc, to component values.
Finall
Finally the filter was breadboarded, 6 shows the comparison with the predicted and the measured response. The response was judged close enough to ment. Hence engineering time and effort had been saved, not to mention possible burnt out components. Rental of the main frame computer the Company has access to would have cost $£ 30$

For and against

The YF matrix provides a method of puter. Other methods exist, but after a year of experience in industrial R\&D the YF matrix has proved superior for all but passive ladder networks. For versatile usage of analysis programs
modelling techniques become essential, although modelling ultimately is
synonymous with a sound understanding of circuitry
some drawbacks; analysis does have remain bad designs although will fidence in them may grow if the computer says they will work. A similar trap exists regarding computer accuracy the predicted response of a circuit using $n \%$ tolerance components is rarely bet-
ter than $n \%$. As the reliability of the ter than n\%. As the reliability of the
desktop machine determines its running cost, i.e. the service and repair costs, this should be carefully looked at before investing in a machine. Finally, the speed of operation of a desk-top used to a large main frame; this arises from the use of an interpreter instead of a compiler. Nearly all these drawbacks stem from the cheap desktop machine being a first-generation machine used
by first-generation engineers, and so it must be expected that as experience
 active filter in Fig. 5.
grows the cheap desktop machine will become more established as a common piece of lab equipment.
Acknowledgements. My thanks to the management of McMichael Limited for encouragement in writing these articles, and colleagues in Advanced Projects Division for help in obtaining the material, though any errors are my
own.

Correction to part 1. The author regrets a row was omitted from matrix YF, in the example on page 40, February $-\mathrm{Y}_{2,}, \mathrm{Y}$, fourth row should read 0,0, $-\mathrm{Y}_{\text {fith }} \mathrm{Y}^{23}, \mathrm{Y}^{23}, 0$, the re rew shown being the 39; under Fig. 4 the term in I_{0} should read $-\mathrm{Y}_{01} \mathrm{~V}_{1}$ and not $-\mathrm{Y}_{02} \mathrm{Y}_{1}$, and in the matrix form the 1st column, 3rd row term is of course $-\mathrm{Y}_{02}$. The second row should be deleted.

4

Pulse induction metal detector - 2

by J. A. Corbyn.

The bandpass amplifier in Fig. 11 ex-
tracts possible signals from background noise caused mainly by transients in the circuits. To permit a gain of up to 8000 , a narrow pass-band from 0.2 to 0.6 Hz is used with a high-order filter for sharp
roll-off. The circuit also has a limited overshoot with a step function as shown in Fig. 12.
The output is displayed by a voltmeter, and an audible signal is provided oscillator for positive signals and a 900 Hz oscillator for negative signals, see Fig. 13. All of the main timing pulses are generated by the circuit in Fig. 14.
The prototype used a variable c.m.o.s.

 supply up to 1.5 A . Two transmit coils were used in the prototype because a
rugged high-voltage p-n-p transistor was not available at a reasonable price. The regulated power supply is shown in Fig. 16. As well as the capacitors shown, extra decoupling should be provided on each circuit
not critical and the prototype was built in module form with jack plugs and sockets for interconnexions. Selection of damping resistors for the transmit and receive coils is best carried out with
an oscilloscope, although I found that the values chosen were generally in agreement with the theoretical values.

Conclusion

This metal detector is essentially target when it is moving in relation to

WORLD OFEMATNUTDRANIO

Awards and certificates

 Are the awards and certificates available to amateur operators who canshow evidence of two-way contacts show evidence of two-way contacts
with stations in specified areas, countries and even "squares" a help or a even those who seldom seek to acquire the many "parchments", tend to accept them as an inherent part of a hobby that sets great store in achieving the utmost in performance in h.f. and v.h.f. bands. There can be fow h.f. operators who kick from claiming to have "worked all continents" or qualified for the DXCC (100 countries). But questions arise when every loc
One long-time critic of the furiously competitive "dx-chasing" that may be encouraged by awards has been Bill Scarr, G2WS. In his presidential address to the RSGB in 1950 he claimed:
"Much more would be achieved if the "Much more would be achieved if the
amateur could shake off his feverish thirst for "dx" which in its most sinister form can transform him into a scarcely human animal devoid of all sense of tion for his family or his fellows".
That was 30 years ago but I see from Radio Communication that he is still as critical as ever of such practices, particularly of what he refers to as the new
parlour game of "working squares" (squares on a map) which he compares to collecting the numbers of railway engines or cigarette cards! For those no convinced by his arguments, the RSGB has recently published a new edition of R. Emary, G5GH. This provides details of almost 100 of the more significan certificates and awards.

From all quarters

A link with the pioneering says of the "short waves" has been severed by the death at the age of 87 of Miss Brenda Bell, sister of Frank Bell, Z4AA (later
ZL4AA). A skilled telegraphist, she was "second operator" at this famous station at Shag Valley, New Zealand from which were mate the first ever contacts from New Zealand with Australia, then Cecil Goyder at the Mill Hill school station. She was in sole charge of Z4AA when in 1927 contact was made with South Africa, considered the most diffi cult "dx" feat from New Zealand. In
1979 she received the Queen's Service Medal. Deaths of two other well-known
"old-timers" have been reported: "old-timers" have been reported:
Edward Redington, W4ZM who built Edward Redington, in 1911 and was for
many years Instructor-in-Charge of the
U.S. Coast Guard Radio Engineering and Maintenance School; and Dr Bensley, G2UN, an early v.h.f. enthusiast television reception, regularly viewing French 819 -line transmissions from Paris some 30 years ago.
The suffix /MA is used by British maritime mobile stations when the
vessel is berthed, moored or anchored. The suffix /MM is used only when the ship is at sea.
RSGB is preparing to make application to the Home Office for the licensing repeaters. I am not sure how I should react to the rumour that one group is applying for the callsign "GB3VA".

Propagation

speculations For several years, many of the most ing of sunspot activity have been based on the belief that there was a "Maunder Minimum" during the years $1645-1715$
when little or no visible sunspot activity was recorded; a period, as many have pointed out, which coincided with the mini Ice Age in Britain. Much of the evidence for this has stemmed from records kept over many centuries in China and the Far East. Now, however, this whole concept has been challenged by Christopher Cullen in a letter to Nature. He points out that examination of new sources suggests that solar
activity continued unabated during the entire 17 th century and that the preyious sources may either have been inadequate or reflected a period of political chaos and/or simple incom-
petence. He believes that the new evidence is sufficiently strong to advise that on the whole question of the Maundet Minimum "judgement must be suspended".
But if one theory is dented, two others are reinforced. Two years ago E. B.
Dorling of Mullard Space Science Laboratory in a letter to Wireless World (Letters, April 1978) described the evolving theory of Sporadic E: tiny
metallic particles caught up in descendmetallic particles caught up in descend-
ing wind shears becoming ionized in summer to form a highly reflective layer. He noted the belief that these metallic particles were "probably the remains of burned up meteorites". New
evidence to support this view has been reported by G. Brown, GJ41CD who in collabofation with the French amateur F8SH and the University of Dundee has shown from observations over the past eor showers and Sporadic E.

Again, many years ago Dennis Heightman, G6DH, noted the enhance ment of signals on frequencies as low as 3.5 MHz arriving in Clacton along sea
paths during those weather conditions which gave rise to tropospheric ducting on v.h.f. But the possibility that h.f. signals are subject to super-refraction and ducting seems to have attracted th only within the past few years. Now however in Radio Science, R. A. Pappert and C. L. Goodhard provide convincing evidence that super-refraction ducting occurs on sea paths on frequencies from
20 MHz upwards. Experimental work by P. Hansen on a 235 km sea path off the coast of California has shown enhancements up to 20 dB over standard ground wave signals.

Amateur satellite news

 NASA has formally agreed to include he first British amateur satellite Thor-Delta launcher for the Solar Mesophere Explorer project, provision ally scheduled for September 30, 1981 UOSAT is being built at the University amateurs working in the space industry Science Research Council etc. A "breadboard" model is due to be completed by about August to be followed ynd of this year. The first Phasnow due to be put into a highly elliptica orbit about the end of May. A Russian mateur satellite(s) has been predicted or early this year, possibly by the tim

In brief

Transatlantic 50 MHz signals continued to be well received in the UK during the first half of January An Australian 50 MHz two-way record has been conMexico, a distance of over $14,000 \mathrm{~km}$. George Cole, G4AWI who lost his sight on active service in Italy during 1943 has been made a member of the First class Operators Club The GB2RN
station on board HMS Belfast, moored near the Tower of London, will be active on all h.f. bands between April 4-13. The date for the North Midlands mobile rally at Drayton Manor Park, nea amworth has been changed to April 13 1980" mobile rally is on May 25 on the usual site at Ipswich Area Civil Service Sorts Association, Straight Road, Bucklesham, nr Ipswich The. Welsh Barry Memorial Hall on April 20 .

PAT HAWKER G3VA

Mercury switch for parallel-tracking pickup arm

Switch detects 0.2 degree movement

by Rod Cooper

${ }_{6}^{62}$ magnet G which is attached to the tracking arm so that in the central position neither electrode touches the mercury spheroid. A small displacement of the electrodes caused by movement
of the magnet to either left or right causes contact with the mercury and completes a circuit via electrode H. It is worth noting at this point that small vertical movements of the magnet do neither do small fore-and-aft movements. This is all to the good, as move ment in these directions can only aris
om play in the suspens orm If the tracking arm over-runs the proper position, i.e. the servo-motor quickly enough, then the electrodes E and F will roll the spheroid up the inclined plance. Further electrodes J are implanted in the path of the spheroid to operate a cut-out relay which stops
The only forces acting on the car ridge with the switch in or near the forces required to press the electrodes E and F into the surface of the mercury and to overcome the friction of the pivots at A and B. For practical switche switching is of the order of 10 mg . This is a truly negligible force when one considers that on a conventional arm

Fig. 2. Except for output device, transistors are Darlington pairs, MPSA65 for
the thyristor driver, and MPSA 12 for the rest. Switch S_{2} is operated by cueing

fig. 3. Track and motor assembly are similar to opto-electronic version. Pivot and arm details can be obtained from the author via WW.
with an exceptionally low coefficient of friction. The long-term chemical properties are good - it does not decomby mercury. poses problems Surface tension also poses problems
where the electrodes come into contact where the electrodes come into contact with the mercury, and for this reason the electrode tips are sharply pointed. this is the only commonly available metal with the necessary properties i.e. low solubility in mercury (only $2 \times 10-6$ wt \%), strongly magnetic, resistant to oxidation, and easily worked into the
required shape. Iron may be a satisfactory material, but has not been tried in practice.
practice.
As the regions where the electrodes touch the surface of the mercury are current-carrying capability, the servo motor cannot be driven directly. A simple circuit for controlling the motor is shown in Fig. 2. In this system, the servo motor runs at the usual pre-set
speed (as discussed in the earlier article) until the tracking arm is 0.2 degrees off-station, when the mercury switch will operate and either raise the voltage to the motor or reduce it to zero, depending on which side of the switch the
tracking arm is in error. To prevent oxidation
the switch capsule was filled with gas (Propane works quite well and is easy to obtain)
Regarding the mechanical layout, this is very similar to that of the opto-
electronic system already described, except that the reference arm is now attached to the lower part of the gimbal ring, and carries the mercury switch, Fig. 3. The tracking arm carries a
miniature magnet over the top of the switch. The reference arm inertia is added to that of the tracking arm in the vertical plane. However, the position is no worse from this aspect than that of
the conventional arm, as the extra mass the conventional arm, as lhe extra mass
offset by the shorter length of the tracking arm, as previously explained. Of course, it will not provide a large reduction in inertia as the optoelectronic system does, but it is envi-
saged that there are other applications for a switch with these properties, not necessarily in the field of record-players - proximity switching for example. The switch is not difficult to construct, as the captioned diagrams show.
It is not necessary to have inclined pivots as shown in the diagramatic representation, as vertical pivots offset by a small distance will perform just as well over small angles of operation, and are much easier to construct.
which is poisonous by skin absorption and when the vapour is breathed in: Mercury is surprisingly volatile and the lungs are very efficient extractors of the vapour. Work should be done out of
doors and any spillage cleared up at once and dusted with flowers of sulphur.

WIRELESS WORLD, APRIL 1980

Cut and shape brass plate 0.15
(approx. 5/32in.) thick to
shape. Chamfer sides at place
marked C to facili
(B)

$\stackrel{10.05}{4}$

Cut and shape brass pla 0.05 in. thick to shape.

When resin has solidified, knock out brass pattern. File off exectric drill does this in a few minutes.
(c)
+

Solder \dot{B} to A in position indicated. File two-degree to mirror finish overall.

Drill and tap a 6BA thread as shown. Make a two-piece lid for the switch case from a piece of unclad fibreglass p.c.b.b., and drill
and tap this $6 B A$ also. Pivots are not slanted as shown in Fig. 1 . but vertical and off-set instead.

NIEWS OF TTYIE MONTTYT

Education and the electronics
 industry -the Scottish direction

In his inaugural lecture as Professor o
Electrical Engineering at the University o Edinburgh recently Professor Jeffrey Collins called for acc-operative partnership betwe universities, colleges, industry and govern
ment. This would produce more skilled man power, he said, and result in improved products employing microelectronics tech improving employment prospects. Thi would be done by building on the establishe base of Scotland's central belt, "the majo The new technologies of the 1980s and particularly the confluence of microelecronics, communications and computing prosperity over the decade, but "solutions to our present problems will not come easily."
To make sure that the public understand To make sure that the public understand the job creation as well as job loss - of the new technologies, it will be necessary for both engineers and scientists to improve their
communications skills and to join the battle for public understanding.
"Further educational resources are needed, he said, "resources which can
ultimately only be paid for out of the profits generated by manufacturing industry, to
which we in the universities must contribute which we in the universities m
through creative engineering."
hrough creative engineering.
The Scottish electronics
mainly in the immediately post-war years as
ajor American firms such as Honeywell and I.B.M. established factories, initially to
manufacture products developed elsewhere ut later making use ise in product developmen.
Firms also started on local initiatives prises (now part of Thorn/E.M.I.) and som of the founders, having sold out to large combines, had now become "second phase now a group of some 60 small firms "significantly, they are predominantly run by lectronics engineers," which are very suc
cessfully exploiting new or limited sectors of he market overlooked by the larger corporations. This group is actually and potentially very important because American ex
perience between 1960 and 1976 showed that mall firms were responsible for generating wo thirds of all the new jobs.
The Scottish electronics industry, whic valent of one Texas Instrument plant in Dallas) contributes $£ 500$ million in sales to he British economy. Yet despite this range of as a whole has not yet taken full advantage of the excellent chip manufacturing facilities on iss own doorstep
Turning to the responsibilities of govern ment and the central agencies, Profess
Collins observed that the 1979 Booz, Allen

Digital telecine by 1985

Motion Picture and Television Engineer 4th annual conference in Toronto, all-digital telecine machines may be a reality by 1985 . Richard Sanders is the head of the Image and his team have developed an all-digita telecine which he claims produces "an ex ceptionally clear and uniform picture." The sensor is a 1024 element linear array which
scans the film image in sequence at 24 or 25 frames/s to produce a single 625 or 525 -line sequential output which is then stored in digital form. The information in the fiel
store is then modified and read out to provid the conventional $625-$ line, 50 fields $/ \mathrm{s}$ 525 -line, 60 fields/s interlaced video signal. The processing stages in a telecine
machine include matrix colour correction gamma correction and aperture correction. In order to carry out these processing activ
ities by digital means the dark areas of the picture must be coded to 11 -bit sample accuracy. The BBC research team has devised a
practical alternative to a full 11 -bit practical-ta-digital converter by providing an 8 -bit a-d.c. with its signal pre-amplified by
a factor of eight. This second a-d.c. con tributes three additional bits whenever
signal falls below 125% of w 12.5% of peak white
A further contribution to the "clear and uniform" pictures arises from the correctio
process needed for the linear sensor array Corrections for element-to-element sen sitivity variations in the linear sensor, unevenness in illumination at the gate and
colour shading can all be entered into a single line digital store each time the telecine is
reloded the reloaded; the correction coefficients are then simply apptied as part of the digita
processing run. Stability and simple adjustment should made the digital telecine very Atractive.
Richard Sanders claims that the curren sing economical analogue 1.s.i. signal pro ssing cannot yet be matched by digno suits whichneed more space and consum more power. However, his paper âlso takes a nore power. However, his paper also takes a
ook the fully digital studio and foresees a
"period of steady expansion of digital techperiod of steady expansion of digital tech
niques into what is at present regarded as niques into what is at present
undisputed analogue territory."
and Hamilton Report, commissioned by th Scottish development agency, had shown
quite clearly that, as lower-level jobs wer lost, there was an increasing "up market" the government was now cutting the level of funding to the universities. As a result, in dinburgh University the engineering intake is not being allowed to expand. However, the
number of well-qualified schoolchildren applying for electrical engineering and computer science courses con
30% up on the 1979 figure.
The attitude of the British Government stands in sharp contrast to the prompt action taken in Ireland where, in 1979 , the govern-
ment created more than 150 new academic and technician posts in the universities. In contrast, the recent U.G.C. initiative in microprocessor education in Britain would
produce only about 80 posts throughout produce only about 80 posts throughout the
UK, as opposed to the 200 posts which would have to be funded in Scotland alone to match the scale of the Irish initiative.
Professor Collins went on to emphasise the
valuable link between universities and manufacturers as a means of ready transfer of staff expertise based upon a workforce with a high degree of skill. Hewlett Packar
at Queensferry for example, have 90 r. and at Queensferry for example, have 90 r . and d.
staff out of a total of 800 and a 50% growth in ales of new products. As the 1980s progressed, he said, the effect idely. "Authors will would spread more ors, artists, will draw by means of proces ve graphics and composers will us fequency synthesisers." Electronic mail and money transfer will largely replace currency
forms and Texas Instruments, a company forms and Texas Instruments, a company
successful in producing innovatory products (stylophones and speak and spell machines, etc) have recently established a new breed of
"chip shop", which concentrates on selling chip shop", which concentrates on sellin
products based on microelectronics. This sype of expansion into retailing is, in Professor Collins' view, another example of he "vertical integration" which is becoming education. In industry, the creative and effective applications of microelectronics to
particular products could not be achieved particular products could not be achieve
simply by incorporating standard chips. In summing up he said, "Nothing could be urther from the truththan that the UK that the commonly held position, "give me a microprocessor, apply it and the products fal ke apples from the trees" is necessarily
valid. As in industry so in education."ou philosophy at Edinburgh is entirely based on vertical integration, from basic materials
right through to "systems on a chip". Edinight through to "systems on a chip". Edinbuis and simultaneously tackling teaching,
bissity training, long-term research, consultancy and the generation of microelectro
ducts for manufacturing industry,'

Racal gets Decca

After several weeks of speculation about
which of the two "giants", Racal or G.E.C.,
would finaly would finally win the battle for Decca, an
equity offer by Racal worth $£ 103$ million secured the deal for Racal on Valentine's Day, Feb. 14th. The equity offer was backed
by a cash alternative of by a cash alternative of $£ 100.7$ million, which
was less than G.E.C.'s best offer at $£ 106$ was less than G.E.C.'s best offer at $£ 106$
million but the issue was decided by Racal
Electrois'' Electronics' claim that it had had irrevocable acceptances from enough Decca
shareholders to give it voting control. The speculation about Decca began in the early part of January 1980 after the company's attributable profits had fallen from $£ 10$ million in 1976 to $£ 1.4$ million in 1979. By
contrast, Racal's pre-tax profits had rocketed from $£ 9.56$ million in 1975 to $£ 226$ million in 1979. Observers have seen the source of
Decca's ills as bad management linked to a not-large-enough tv business and a too-
classical record division tagged on to its radar, navigator and electronics warfare sections. Increasing competition from the US
and Japan, added to the fall in markets for world shipping also had their effect.
The City's response to Racal and Decca,
personified in Racal's Ernest Harrison and Decca's Sir Edward Lewis, who, sadly, died in
his sleep on 29th January before any of the his sleep on 29 th January before any of the
issues were decided, could hardly be more
diverse. How much of Decca's failing forconfidence in in Sir Ed ward's patrician
chairmand there is no doubt at all about the widespread confidence in Racal itself.
Decca had been born 50 years ago when Sir non-technical chairman) floated the new company in January 1929. Under his leadership the company went from strength to
strength, surviving the depression and panding into electronics. Its record company's heyday was in the 1960s and early seventies, when its catalogue included stars perdinck and Tom Jones and in the early sixties Decca and E.M.I. dominated both classical and hit-parade record sales.
Today, the only Decca record in the hit Today, the only Decca record in the hit
parade is a re-issue of "Knights in White parade is a re-issue of "Knights in white the Moody Blues, first recorded in
Satin
he early sixties The competitors' view of Decca's "prob The competitors' view of Decca's "prob-
lem" is that it had a good range of products on which it made too small returns. It will be interesting to note exactly how Racal's more dynamic approach will modify these "good"
roducts, in the light of the fact that Ernest Harrison is on record as having said that it is
his intention to take over his sompetitors and his intention to take over his competitors and
create a "second force" to rival G.E.C.

First ITU regional

 administrativeconference opens
Some 250 delegates from 28 member coun istrative medium frequency conference the International Telecommunication Union
(ITU) in Buenos Aires. This session will deal with technical and operating criteria and planning methods which will serve as the assignment plan for the m f. broadcast band in region 2 (the Americas - 535 to 1605 kHz) The session began on 10th March and th

Change of
 address

Suppliers of a wide range of semiconducto
devices to both the trade and consumer arkets, Semiconductor Suplies Inter ational are now the official Teledyn miconductor stockists in the London area reviously traded in Wallingt tuated in Dawson House, Carshalton Rd Sutton, Surrey. A milt sock list and catalogu are available on request.

World conference on transnational data flow policies

The repercussions of the growth of data
networks operated by transnational companies, time sharing services, carriers, governments and other international orand developing countries A world conference is being held in Rome rom 23 rd to 27 h June 1980 to discuss the

Methane yields improved transmitting valve grids

The smallest in the range is the RS2054 diameter by by has grid dimensions of 90 mm has a continuous power rating of $1,200 \mathrm{~kW}$ (the RS2084 SK). The grid developed for this model has dimensions of 21 cm diameter by
45 cm high. The small external dimensions of thes Tetrodes, minimal stray capacitance and the advantages related to secondary emission performance combine to make them highly
efficient. Although methane is being used by Siemens, other hydrocarbons may be employed for this

A Siemens pyrographite grid for a power tetrode. During normal working the valve may have to dissipate 100 kW or more, with the
cathode and grid operating at a temperater $2000^{\circ} \mathrm{K}$. The actual grid filaments are only a few tenths of a millimetre in diameter

Citizens' Band moves

The lobby for citizens' band radio in the UK
has been regrouping in the hope of putting has been regrouping in the hope of puttin
stronger pressure on the government. On important move has been the formation of a National Committee for the Legalization of
Citizens' Band. This combines the efforts of Cillizens Band. This combines the efforts of
all Band Association) to make one large pressure group for the whole of the UK. Chairman
is Theo Yard, a councillor at Lewisham, and is treasurer is James Bryant, president of the CBA. C.C. . clubs with at least 100 members are encouraged to join. A meeting of the Nation-
al Committee was held in Cheltenham on 16th March.
In addition, the Citizens' Band Association has applied to the Radio Regulatory Depart-
ment of the Home Office for a licence for a private mobile radio (p.m.r.) communication system - the kind of licence issued to taxi
firms, etc. Ostensibly it is for a self-help group
of motorists, the principle being that it will
help to save fuel, but the CBA sees it really as help to save fuel, but the CBA sees it really as
a "foot in the door" from which a larger system may grow. Initially it is intended for about 50,000 users, but the Association says it hopes to get about a million users in $2^{1 / 2}$ years.
According to James Bryant, lawyers have advised the CBA that the Home Office cannot refuse to give such a licence, but at the
time of going to press the Association had ime of going to press the Association had
not even received an acknowledgement of its application.
Fappication. FBe CBA has written to the Home
Finaly, Secretary, telling him that the government
need not worry about appointing extra civil servants to administer a citizens' band radio ervice. The Association is willing to provide
he staff to do this. Their accountants have old them they would have no difficulty in raising the money to form a limited company to take on such a staff.

Noogami Electric announce unique device

THE British subsidiary of the Japanese Noo-
gami Electric Corporation has recently announced the introduction of a "first"" in the
linear device field The item results from a linear device field. The item results from a ten-year test programme which enquired
into base conducting materials and takes the form of a current-controlled, bi-directional circuit element of outstanding electric properties.
Although revealed, Wireless World believes that the heart of the forming process is the
mechanical extrusion of a medium-weight element. A significant advance in this device is the coating of the extrusion with a second non-oxidizing alloy which prevents the pro-
gressive degradation of the primary (host) gressive degradation of the primary (host)
extrusion. This symbiotic amalgam over-
mes traditional short, medium and long term "life" prob
primitive forms.
The dorms. The device is claimed to exhibit extraor-
dinary electrical properties such as a totally flat frequency response from d.c. to 100 GHz (ignoring skin effect losses), good thermal tracking, fast rise time and virtually no propagation delay.
duced by the device.
Packaging consists of the nowstandardized axial, horizontally-opposed
terminations. Designated ERIW-FO-lin the new device can be used in conjunction with a resistance and load to form a simple voltage dropping circuit, it is claimed to be ideally
suited to applications where virtually suited to applications where vi
impeded current flow is required.

The new conducting device undergoing extensive environmental tests in the manufacturer's "clean

NEWS IN BRIEF

A display of early wireless equipment, under Twenties and Thirties", will be held at the Admiral Blake Museum, Bridgwater, Somer set, starting on 8th Apriil 1980. The display is
intended to provide a view of some of the intended to provide a view of some of the
hardware of pioneering days in broadcasting

The IEETE has a series of lectures and other events planned for March and April 1980 On
27th March the Finniston Report will be 27th March the Finniston Report will be discussed at a meeting in the Ariel Suite,
Royal Angus Hotel, St. Chads, Queensway Birmingham, starting at 7.30 pm .

On 2nd April, "Electric Vehicles, Presen and Future Technology," will be presented
by M. Appleyard, manager of the vehicles by M. Appleyard, manager of the vehicles
Eng.motive power group, at the Polygon Eng.motive power group, at
Hotel, Southampton at 7.30 p.m.

On 10th April, P. Kimber, senior engineer GADEC project, Seaboard, will present
"Computer Assisted Distribution Engineering Control," at the Sussex County Crick
p.m.

On 11th April Professor A. J. Ellison will present "Extra Sensory Perception - Fact or
Fallacy?" at Swansea University starting at 6.30 p.m.

On 17th April, "Electrical and Electronic Engineering Design - Education and
Training for Tomorrow," (speaker to be confirmed) to be given at the IEE building Savoy Place, London WC2 at 10.15 a.m.

On 21st April "Electrical Safety at Work" will be presented by P. E. Whitby, senior inspec quarters, Sealand Rd, Chester at 7.30 p.m.
On 23 rd April, the Plessey PDX System will be introduced by S. J. Gracie of Plessey
Communications and Data Systems Ltd, at he Barry College of Further Education arry, at 7.30p.m.
On 24th April, The Jet Project will be dis
cussed by the director of the Jet Join Undertaking, Dr H. O. Wuster, at the Oxford College of Further Education, Oxpens Rd oxford, at 7.30 p.m.

The Department of Electrical Engineering Science at the University of Essex will be
running its annual electronics Summer chool for teachers between 7 th and 11th taneously; the linear circuit design course is nerational mplifiers in transisue applica operational amplifiers in analogue applica-
tions and the basic elements of the hi-fi amplifier are considered in detail. The digital
circuit design course looks at the use of the circuit design course looks at the use of the
transistor as a switch and develops design transistor as a switch and develops design
using integrated logic circuits. The Elec"A" level in course is related to the A.E.B. "A" level in electronic systems. Topics are
varied and are fully supported by laboratory sessions based upon the " A " level ex-
perimental boards and special emphasis is
placed on communications systems.

NEWS IN BRIEF

As the author and commentator of the ty
series "The Mighty Micro," Dr. Christophe Evans brought the chip to the atrention of
he "masses". Sadly, he died before the series was completed and in commemoration of his contribution as a communicator of the vital interactions of society and technology,
seminar on the subject of "Microprocessor and the Future", will be held in the Fyvie Hall, Polytechnic of Central London, 309 Regent p.m. Tom Stonier will be introducing the seminar and he will be accompanied by a member of the National Physical Laboratory post. Applications should be made to the London Regional Management Centre for ee tickets for t
he Byte Shop assets have been acquired by Comart (Computer Mail Order and Retail) Ltd, and the original premises in Tottenham
Court Rd, Ilford, Nottingham, Birmingham, ounchester and Glasgow are to Manchester and Glasgow are to re-open fully
staffed by the personnel running them before the Official Receiver became concerned with
the original company The new company is the original company. The new company is to
be called "The Byte Shop" and all branches are currently being re-stocked with micro computers and systems for off-the-shel delivery. The Byte Shop will operate as an roup and the company intends to retain its roup a
indepen

A new company, called Monolog Systems company is interested in the application o microelectronics to industrial projects and systems for industrial applications.
he 10th European Solid State Devic Research conference will be held at the niversity of York from 15th to 18th Sep is that of bringing toether scientists and engineers working in the broad field o solid-state devices andto provide a European
forum for the presentation and discussion of the latest research and technology.
conference on low-frequency noise and Aearing is to be held from the 7th to the 9th
May 1980 in Aalborg Denmark under the May 1980 in Aalborg, Denmark, under the
sponsorship of the Federation of Acoustical Societies of Europe, The (British) Institute of Acoustics, the Danish Acoustical Society, the
Danish IEEE, the EEC and Aalborg Univerty Centre. The conference fee is 500 Dkr and Henrik Moller, Aalborg University Centre, ox 159, 9100 Aalborg, Denmar

Portsmouth Polytechnic is running a series of courses on microprocessors from 24th March
to 18th July 1980 . Details can be obtained to 18th July 1980 . Details can be obtained
from Mrs A. P. Sizer Department of Elec from Mrs A. P. Sizer, Department of Elec-
trical and Electronic Engineering, Portstrical and Electronic Engineering, Ports-
mouth Polytechnic, Anglesea Rd, Ports-
mouth POI 3DJ

Plessey and Anderson form "Signal Technology Ltd"

Two well known electronics giants, one wel
known in the UK, the other in the USA, have known in the UK, the other in the USA, hav
founded a joint venture company, to b known as "Signal Technology Ltd", based in Swindon, Wiltshire. The two companies
involved are Plessey and Anderson Laboratories Inc., and the main expertise o the new company will be the design, appliwave filters.
The company will concentrate on the
market for military application market for military applications such a
weapons and weapon systems, radar cabl weapons and weapon systems, radar, cable
tv, land-based and satellite communication

Obituary-

Cecil Goyder

The death has occured in Princeton, New
Jersey, USA, of Cecil Goyder who, until his Nations communcations and bunted radio services. Previously he was engineer-
in-charge of All India Radio but it was as a young engineering student at the City and young engineering student at the City and
Guilds Institute, Imperial College that, in
1924, he made an indelible mark on the 1924, he made an indelible mark on the
history of short-wave radio. As the operator of the Mill Hill Scoool wireless society's amateur transmitter, 2SZ, he succeeded at 6.15 a.m. on October 19 th of that year in making the first direct two-way
contact on low power with Australasia. The contact on low power with Australasia. The
transmission wavelength was 80 m and Wireless World reported the event under the American "Amateurs girdee the world American papers please copy."
This contact and others over weeks are regarded as a significant achievement in amateur long-distance working.
There can be little doubt that Cecil Goyder's There can be little doubt that Cecil Goyder's
youthful success was bitterly resented by some of the leading amateur operators of the day, who had organized the trans
oceanic tests including E J. Simmonds, 20 D whose signals had been heard in New Zea-
land the previous day land the previous day
equipment, plus land mobile radio installa tions. Signal Technology's production unit in
Swindon contains facilities for dedicated computer-aided design and a full range o Both Signal Technology and An offer the same complement of products with Signal Technology serving UK and European manese markets. As a result of the pooling of Plessey and Anerson resores, heompany wil 200 products.

Cecil Goyder's contact was Frank Dillon
Bell, Z44AA, of Shag Valley station Waihemo where, in 1964, a commemorative cairn was erected. Cecil Goyder was also responsible
for the design of an early form of phaselocked variable oscillator known as the

Solar power study group meets
A study group which is to look at the impli-
cations of solar power satellites for British industry met at the Leatherhead base of Era industry met at the Leatherhead base of Era
Technology recently. This was the latest in a series of meetings bringing together special-
ists from Marconi Space and Defence Sys ists from Marconi space and Defence Sys-
tems, Era Technology and British Aerospace tems, Era Technology and British Aerospace,
Also present were representatives from the RAE, Farnborough, which is funding the
six-month study. six-month study
The proposed
convert solar energy into electrical energy and beam it by microwave to the Earth's
surface where it surface stare and sourd be coliected at a grid. Era's part in the activity is that of assess-
ment of the transmitting and receiving antennas as well as the ground power conversion, contr
problems.

Kikusui-new in UK

Measuring instruments made by the
Japanese firm of Kikusui are now sold and serviced in the UK by Telonic Berkeley UK,
of Castle Hill Terrace, Maidenhead a sub. of Castle Hill Terrace, Maidenhead, a sub-
sidiary of sidiary of the American company Berkeley
Controls, Inc. Kikusui is a relatively small firm, with a staff of about 200 and a turnover
of $£ 5.6$ million, but the range of instruments it produces is surprisingly large. Telonic
will hold in stock only a small part of the range, concentrating on oscilloscopes, function generators and several audio or 1 l.f. test
instruments, including an automatic distorinstruments, including an automatic distor-
tion meter and wow-and-flutter meters. The 6702 wow and wow-and-flutter meter mhown indicates
IS, NAB, CCIR and DIN whe JIS, NAB, CCIR and DIN weighted readings,
with separate wow and flutter indication with separate wow and flutter indication.
Sensitivity is sufficient to accept signals

directly from a tape head. Both digital and analogue displays are provided and a
memory function of po po memory function of up to 10 el eliminates
jitter, the digital indicator reading tape speed, frequency and freq
as tape speed fluctuation

A.m. detectors

Circuits used for the detection of mplitude-modulated signals are grouped into four main types, examined in detail.

The word detector has been in use since the early days of radio and it was an unfortunate choice of term because it is by no means clear what a detector deradio signal because the aerial and/or first tuned circuit of a receiver do that. it doesn't detect the presence of modulation because an a.g.c. detector is esigned to ignore modulation and to carrier amplitude. According to B.S. 4727 the job of a detector is to abstract information from a radio wave: the information may be the modulation be the value of the unmodulated carrier amplitude as in the a.g.c. detector. Thus a demodulator is an example of a deector but a detector demodulator.
different types of dens number of apparently grown enormously. It is possible to name 30 or 40 a.m. types without great effort. Terms such as diode detector, square-law detector, are constantly encountered in electronics literature and examination of the various terms shows that the qualifying word may describe a number of
different features of the detector. For example it may describe:
(a) a component used in the detector e.g. diode detector, grid-leak detec-
(b) a property of the detector eg.
(b) a property of the detector
(c) the shape of the transfer char teristic of the detector e.g. squareaw detector
(d) the originators' names e.g. Fosterexample)
or, or course, the word detector may be used in its general (non-electronics) presence of a particular condition eg overload detector.
It follows that a given detector circuit may be known under a number of dif-
ferent names. For example a diode de ector may be described as a linea detector, an anode-bend detector as square-law detector and the infinite mpedance detector is sometimes called a reflex detector. There are, therefore, as the multiplicity of terms might sugg est and it is the purpose of this article to illustrate this by surveying the various If the mode of operation of the various a.m. detectors is considered in detail it is found that each conforms to ne of four basic modes. There ar minor variations in the details of operane of the following four types:

1. those in which the detector output is made up of samples of the peak value of the modulated r.f. input,
2. those in which the detector clamps a constant potential so that the mean value of the signal váries at modulation frequency,
3. those in which the output stems from the interaction between the sid modulated r.f. input, the interaction being caused by the non-linearity of the transfer characteristic
4. those in which the output results the modulated r.f. input and a second input at the carrier frequency.

We shall now examine this classific ion in detail.

Sampling detectors
Series-diode circuit
The simplest example of a sampling etector is the series-diode circuit shown in Fig. 1. It is similar to a half C_{1} can be called a reservoir capacitor Speration of the circuit relies on the apid charging of C_{1} through the low alue forward resistance and the subs quent discharge through the high-value
 half-cycles of r.f. input and charges C
to the peak value of the input signa to the peak value of the input signal
During negative half-cycles the diode is cut off and C_{1} begins to discharge through R_{1}. The ratio of the time con owever, so chosen that very little we charge on C_{1} is lost before D_{1} begin
to conduct on the next positive half cycle of input and C_{1} is again charged to the peak value. Thus C_{1} maintains a poscept for the instants when the input except for the instants when the input
signal passes through its positive peaks. In practice the period of conduction is only a small fraction of the positive hal cycle. Thus the load circuit $R_{1} C_{1}$ is con the low forward resistance of the diod for only a brief fraction of each inpu cycle and during this time the capacito voltage is "topped up" to the peak valu of the r.f. input. For the remainder of the load circuits from the r.f. input so that the voltage across $\mathrm{R}_{1} \mathrm{C}_{1}$ begins a small exponential fall. Thus the diode acts as a switch which is turned on and off by the carrier component of the
input signal. This is an example of input signal. This is an example of a
sampling process in which the modulated r.f. input signal is sampled once per cycle when it is passing through its positive peak. As the peak the voltage across $\mathrm{R}_{1} \mathrm{C}_{1}$ changes to give a simulation of the modulating signa waveform made up of a number of topping up" increases separated by exponential falls. These constitute an r.f. ripple of small amplitude superposed and which is easily removed by an r.f. filter to make the output waveform good approximation to the modulating signal.
This type of detector is widely used in a.m. receivers and gives a good perfor large enough to switch the diode effectively, i.e. so that it has a low forward resistance and a high reverse resistance forward resistance is higher and the reverse resistance lower than could be wished and thus detection of small mplitude signals is. ine for
 Fig. 1. The simple series-diode detecto
circuit is an example of a sampling detec
D. APRIL 1980 large-amplitude signal synchronised with the carrier component. This is possible using a synchronous detector dulation of suppressed-carrier a.m. signals: such detectors are described later. The switching signal can be obtained from a local oscillator as in received signal by removing the modulation as in the homodyne receiver. I.cs are available with limiter stages suitable for use in a homodyne Infinite-im
Infinite-impedance detector. The diode a triode, the reservoir capacitor being connected in the cathode circuit as shown in Fig. 2. The valve is turned on by positive swins of the signal applied

Fig. 2. Infinite-impedance detector.
to the grid and is cut off by negative swings. Thus the capacitor C_{k} is cathode impedance of the valve during positive half-cycles and discharged through R_{k} on negative half-cycles. This is another example of a sampling detector, the cathode capacitor so biasing the fraction of the positive half-cycle during which, by cathode-follower action, C_{k} is charged to the positive peak value. This is, of course, the so-called unfortunate term because another cathode capacitance of the valve, in conjunction with C_{k}, gives the circuit some of the properties of one form of Colpitts oscillator and the input impedance can be negative, as many en-
thusiasts discovered in trying to cure such detectors of r.f. instability.
Anode-bend detector. The infinite mpedance detector can be made cap necessary is to include a resistor R in the anode circuit and an amplified version of the detected signal is available

Fig. 3. Anode-bend
automatic cathode bias.
from the anode. The circuit is shown in Fig. 3 and is known, of course, as the The cathode circuit is not decoupled at a.f. and the resulting negative feedamplifier to approximately $R_{\mathrm{a}} / R_{\mathrm{k}}$ so that R_{a} must be large compared with R_{k} to achieve worthwhile gain. If $R_{\mathrm{k}}=47$
$\mathbf{k} \Omega$, a commonly-used value, then R could be $470 \mathrm{k} \Omega$, giving a gain of approximately 10 . This detector operates by sampling the positive peaks of the r.f. input and the anode (and
cathode) current consists sion of carrier-frequency pulses. These are smoothed to give an approximation of the modulation waveform by the
reservoir capacitor C_{k}. To obtain a reservoir capacitor C_{k}. To obtain a similar waveform from the anode capacitance C and the time constant $R_{\mathrm{a}} C_{\mathrm{a}}$ should equal $R_{\mathrm{k}} \mathrm{C}_{\mathrm{k}}$. If $R_{\mathrm{a}}=10 R_{\mathrm{k}}$ then C_{a} should be $C_{k} / 10 . C_{k}$ is commonly 100 pF , so C_{a} should be 10 pF . Stray capacitance is probably of this a physical component to provide it. If the equality of time constants is maintained there is no difference in audio quality between the outputs at node and cathode. This is an interes when a.m. transmissions were the only source of broadcast music the audio quality from the infinite-impedance de tector was assessed as good by hi-fi anode-bend detector was regarded as poor! Perhaps the time constants weren't equal.
If the value of C_{k} is increased sufficiently to give effective decoupling a is considerably the gain of the valve elimination of negative feedback. The capacitor, once charged on the positive half-cycle of the r.f. signal at the valve grid, now discharges very slowly, the ime contant being of the order of amplitude of the r.f. carrier is constant or increasing but it can be important when it is decreasing. If, as a result of modulation, the carrier amplitude falls more rapidly than the cathode off until the capacitor voltage has falle r the carrier amplitude has increase sufficiently for conduction to be pos sible again. Thus there are momentary rate of fall of r.f. amplitude is a maxi mum i.e. when the modulation frequency is high and the modulation deep. It is fortunate that in sound signals deep modulation rarely occurs distortion caused by these gaps in condistortion caused by these gaps in con-
ducted is not as serious as might be supposed: indeed many of the har monics introduced as a result of this ffect are outside the passband of the amplifier, the loudspeaker or the ears of
the listener. Although this type of detector was never used in receivers in
ended for high-quality reproduction was commonly employed in cheape odels where its high gain was consid

Synchronous detectors. Circuits of the

 ype so far considered are used to dete is present. They take samp the carrie positive peaks of the modulated r nput and are not affected by variations in the timing or phase of the peaks. To detect carrier-suppressed a.m. signals phase as well as the amplitude of the peaks of the input signal: the reason fo his will be made clear in the discussio of Fig. 5. Thus the detector must have a reference signal of constant frequencyagainst which it can compare the phase against which it can compare the phas the detector is provided with a second input in the form of a constant mplitude sinusoidal signal synchron sed with the (suppressed) carrie be detected.
Synchronous sampling detector. On possible circuit for a synchronous sam pling detector is given in Fig. 4. The ingle series diode of the prototype a.m.

fig. 4. Synchronous sampling detector ing a diode bridge.
detector is replaced by two diodes and a centre-tapped transformer. Both diodes conduct together to produce the low-
impedance path which connects the source of modulated r f to the capacitor C_{4}. When the diodes are nonconductive the path is open-circuited and C_{4} retains its charge. The diodes mos-conduction by the carrier input and not by the modulated r.f. input and thus the carrier input must be large compared with the other input signal. The balanced form of the carrier circuit is adopted to minimise any carrier com-
ponent which may reach C_{4}. The timeconstant circuits $R_{1} C_{1}$ and $R_{2} C_{2}$ are included as diode loads to ensure that the diodes conduct for only a smal fraction of each cycl pling is required.
The way in which such a detecto demodulates a double-sideband
suppressed-carrier signal is illustrated in Fig. 5, in which the vertical dashed lines indicate the sampling periods. A non-synchronous a.m. detector, being
insensitive to phase, would sample all the positive peaks and would thus pro-

The diodes then connect C_{4} to the
source of modulated r.f. for the whole of one carrier half-cycle.
Synchronous anode-bend detector. The anode-bend detector with a short time constant $R C$ combination in the
cathode circuit is an example of a sampling detector, the valve being switched to conduction once per carrier cycle by the positive peak of the r.f. input applied to the grid. The valve could alternatively be switched on and off by a
carrier-frequency signal applied to the carrier-frequency signal applied to the
cathode circuit and one type of synchronous sampling detector operates on this principle. It is sometimes called a gated amplifier.
A typical circuit is shown in Fig. 6. The modulated r.f. signal is applied to the grid and the carrier signal, suitably phased with respect to the grid signal and of much greater amplitude, is applied to the cathode. The components
$R_{\mathrm{k}} C_{\mathrm{k}}$ act as a diode load circuit and $R_{\mathrm{k}} \mathrm{C}_{\mathrm{k}}$ act as a diode load circuit and
hold the valve cut off except during the negative peaks of the half-cycles of the signals applied to the cathode. When the valve is conductive the anode cur-
rent takes up a value determined by the rent takes up a value determined by the
amplitude of the signal at the grid at that instant. As the valve is provided with an anode load, corresponding magnified signals can be obtained from the anode.

Clamping detectors

Shunt-diode circuit. In the circuit of Fig. 1 the output of the detector is taken from the reservoir capacitor, but it could alternatively be taken from the diode, the circuit being re-arranged as
shown in Fig. 7 to enable one leg of the diode, the circuit being re-arranged as
shown in Fig. 7 to enable one leg of the
an exple of clamping in which
positive peaks of the input signal are moort
Fig. 7. The simple shunt-diode detector
circuit is an example of a clamping detec-

circuit tor.
 "

output to be earthed. In this version of the circuit, known as the shunt-diode detector, the reservoir capacitor is series-connected, which makes the
circuit convenient when d.c. isolation is circuit convenient when d.c. isolation is required between the output terminals
and the source of modulated r.f. input. There is, however, no r.f. isolation between r.f. input and the output as in the series-diode circuit. The reservoir capacitor provides a low-reactance path at r.f. and transfers the modulated-r.f.
input signal with little attenuation to the detector output terminals. The output is, in fact, made up of the modulation-frequency signal generated across the reservoir capacitor in series with the modulated-r.f. signal transfer-
red from the input. Thus the output of red from the input. Thus the output of
the shunt-diode detector has a much greater r.f. ripple content than that of the series-diode circuit. The waveform of the output from the shunt-diode
circuit can be deduced in the following circuit
way.

Fig. 10. Anode current/ grid voltag
relationship for a grid-leak detector. cross the output terminals. Thus fo cross the output terminals. Thus for output of the detector is zero: this oc curs at each of the positive peaks of the input signal. The detector output therefore consists of a version of the modulated-r.f. input waveform in which each r.f. cycle is so displaced vertically
that all positive peaks touch the zerovolts line as shown in Fig. 8. The mean value of such a signal varies with modulation and, if the r.f. ripple is suppressed, consists of the modulation waveform superposed on a negative
zero-frequency component proportional to the amplitude of the unmodulated r.f. input. positive peaks of the input signal are often used in television to clamp the sync tips of a video waveform at a particular voltage: in this application the circuit is known as a d.c. restorer.

Grid-leak detector. One well-known example of a clamping detector which provides amplification is the grid-lea leaky-grid or cumulative-grid detector, the circuit diagram of which is shown in Fig. 9. The grid and cathode of a triode or pentode are used as a shunt-diode generated between control grid and anode, is amplified by the valve to give a magnified output from the anode. Fig 10 shows the waveform of the grid input signal (positive peaks bein

Fig. 9. A grid-leak detector.
clamped at zero volts) and the corresponding anode-current waveform. The detector has the disadvantage that the control grid does not make an ideal diode anode and detection
efficiency is therefore not efficiency is therefore not high. The
diode output contains, in addition to the wanted a.f. component, a d.c. component and a large r.f. ripple. The d.c. component provides the valye with grid bias and its value depends on the amplitude of the input signal, the bias
becoming more negative (so decreasing mean anode current) as input-signal amplitude increases. The bias is suitable for class-A amplification only for a limited range of input-signal amplitudes. When it is unsuitable the
curvature of the $I-V$ characteristic causes anode-bend detection (in which the mean anode current increases with increase in input-signal amplitude) and the resulting audio signal is in antiphase with that due to grid-leak detection, distortion.
The r.f. component of the anode current can readily be suppressed by a decoupling capacitor across the anode make use of this component to provide positive feedback (called reaction) which greatly increased detector sensitivity.

In an effort to improve the performance of the grid-leak detector it was grid base should be used and that the anode voltage should be high to further increase the grid base. This made location of the operating point on the cha racteristic less critical and the a.f. component resulting from anode-bend dethe grid-leak detector was known as a power-grid detector.
Synchronous clamping detector. Figure 11 gives the circuit diagram of a ynchronous clamping detector.
much in common with the synchronous sampling detector of Fig. 4 except, of course, that the diodes are arranged to produce a shunt short circuit once per circuits form a balanced circuit chose to minimise carrier content in the detector output and the time constant of

Fig. 12. The action of a synchronous suppressed-carrier, amplitude-modülated input signal.
the load circuits $R_{1} C_{1}$ and $R_{2} C_{2}$ is made long compared with the carrier period
so that the diodes conduct for only small fraction of each cycle. At each conduction period that part of the modulated-r.f. input waveform whic ero volts.
The way in which the detector demodulates a suppressed-carrier signal is illustrated in Fig. 12, in which the verti cal dashed lines indicate the conduction
periods. For a correctly-synchronised carrier these coincide with positive peaks of the modulated-r.f. signa during one half-cycle of the modulatin signal and with negative peaks during the other half-cycle. Thus the output
signal has positive and negative swings as shown in Fig. 12(c). As for the proto type non-synchronous shunt-diode de tector there is a very large r.f. ripple

Fig. 13. A simple s.sychronous clamping
detector using a symmetrical bipolar transistor.
content in the output but, for a symme trical modulating signal such as a sin wave, there is no d.c. component
The diodes can be replaced by a which is switched on and off by the carrier signal applied to the base. The circuit diagram (Fig. 13) includes an $R C$ combination in the base circuit whic clamping period. If the transistor is symmetrical type transmission of the carrier signal to the detector output can e minimised.
Additive (non-linear) detectors In all the detectors so far considered, eservoir capacitor has played an es sential part: it is charged during part of discharges during the remaining part of the cycle. Thus the shape of the input output characteristic of the chargin device has only a second-order effect. in which the shape of the input-output characteristic is all-important becaus it is in use for most if not the whole of each cycle of input signal. One example of this type is the anode-bend detecto in which the valve is biased by a battery shown in Fig. 14.
Detection is achieved because of the unequal response to positive an
negative half-cycles of the input signa and this is a consequence of the non linearity of the $I_{\mathrm{a}}-V_{\mathrm{g}}$ characteristic as shown in Fig. 15 . Clearly the mean value
of the anode current varies with the modulation and the magnitude of the modulation-frequency output depends on the severity of the non-linearity of the characteristic. The mean curren also varies w.
input signal.
There is an alternative method of explaining the operation of this type of detector. When two sinusoidal signals with different frequencies are applied to

Fig. 14. An
battery bias.

72
WIRELESS WORLD, APRIL 1980 principle in which, as the identity implies, current is assumed to flow in the device throughout each cycle of both input signals. In all these examples both input terminals control the current be regarded as controlling the mutual conductance of the device. The output current is given by $\mathrm{g}_{\mathrm{m}} v_{\text {in }}$ approximately (where $v_{\text {in }}$ is the signal applied to the
second input terminal) and is thus proportional to the product of the two inputs.
One of the earliest devices to be used in this way was the pentode, the two inputs being applied to the control grid
and the suppressor grid. The screen grid, being effectively earthed at r.f., prevented any capacitive interaction between the two inputs. A better performance was achieved in the hexode which had an additional screen gri
between suppressor grid and anode. An alternative method of producing a circuit in which two inputs control the same current is by connecting two transistors in series across the supply as indicated in Fig. 16. A number of circuits larly in integrated circuits, and frequently the upper transistor is replaced by a parallel push-pull pair, the input being applied to their bases in only one of the transistors. The advantage of using push pull is that the currents of the paralleled transistors are in antiphase so that alternating currents at the frequency of the push-pull input
are confined to the push-pull stage and are confined to the push-pull stage and
do not stray into the supply circuits or to the lower transistor which controls the current to the push-pull pair. A third type of multiplicative device is the dual-gate, field-effect transistor and thus if two signals are applied to the :two gates, sum and difference signals are available in the drain current. To conclude this article the is summarized in the table.

*See, for example, J. W. Herbert: "A Homodyne Receiver" Wireless World Sept. 1973.

* VAT + P\&P as shown in brackets C

A

Flease send me the Antex colour brochure \square I enclose cheque/P.0./Giiro No. 2581000
Name . Addess.

Look closely at the

SSE520 SHNTHESTZED SIGNAL GENERATOR

The SSG520is a synthesized signal generator covering the range 10 to 520 MHz and was designed for fast measurement, test and alignment work in the v.h.f. and u.h.f. bands with particular emphasis on the needs of those servicing mobile communications equipment. It s astonishingly easy to use, exceptionally stable and has remarkablylow leakage so it salso proving popular for many oter

Fast,error-free frequency selection by thumbwheel switches and automatic ranging eliminates the need for a frequency meter and true synthesis in 100 Hz steps brings maximum stability at all frequency settings. What's more the SSG520 needs no re-tuning after a power loss. An optional ovened crystal version is avaliable for even greater accuracy and stability. Sideband phase noise is better than - $110 \mathrm{~dB} / \mathrm{Hz}$ and harmonics are less than 25 dB .Any combinationof a.m. and f.m. modulation internal or externeald direct reading of dBmand volts and enabling accurate mute/squelch settings. .

A really useful extra feature on the Farnell SSG520is the SINAD facility. This feature provides a simple, quick and unambiguous method of measuring receiver sensitivity. It may also be used as an alignment aid ensuring the reception of intelligible signals by providing a better band-pass alignment.

If the remote programming option is ordered then all major functions can be controlled via a multipin socket. These include frequency, attenuation, modulation and SINAD
Reverse power protection is now available as aninternal option preventing possible attenuator burn-out for up to 50 watts reverse power. This protection automatically resets when the power signal is removed.

Use this magazine's reply system now to obtain your copy of a six page colour brochure on the SSG520 and we'll also send you a useful pocket-size folder of telecommunications data, charts and tables.

PROGRAMMABLE
NOTES FOR KEYBOARD INSTRUMENTS
Regarding M. Robins's letter in the
November 1979 issue one way ofoverco November 1979 issue, one way of overcoming the problems with key changes while
allowing a "natural" scale is to redefine the function of the keyboard. The following is a suggestion to overcome the limitations of
current keyboard instruments, which are tuned to an "equal-tempered" scale. The latter is really a compromise, basically due to the fixed number of physical notes availmusical intervals (i.e. subjectively correct) could be played in any key; in fact early keyboard instruments had "split" notes to
reduce this problem. For example, Ab and G\# reduce this problem. Fore example, Ab and $\mathrm{G} \#$
should strictly be different frequencies, depending on the scale/key being played, but have now been tempere to give the same frequency (i.e. they are the same physical
note), which has become acceptable in modern music.
However, if we consider a keyboard generating intervals" as opposed to abso-
lute frequencies, this situation should not arise. Imagine a keyboard where notes to the right represent positive intervals relative to
the last note played, and notes to the left represent negative intervals (the middle note representing no change). This is shown in interpreted as a set of intervals (eg major/ minor tones, thirds, fifths, octaves, etc.) the instrument will generate the exact frequenfrom any note will always be the exact ratio from any note will always be the exact ratio
of 3 to 2 .

Fig. 1

In practice, frequencies have to be generated which are proportions of the previous frequency. This could be done using
multiplier circuits or digital techniques, but a mutiple method which springs to mind is to use a basic synthesizer concept. In these instruments a keyboard generates a linear range
voltage-controlled oscillators. Using this idea, the frequency multiplication/division we require is easily obtained by adding/ subtracting d.c. voltages. Operational
amplifiers can be used for this, as well as for storing the last note played in a sample-and-
hold arrangement. 2 (aircuit in Fig. 2 (abeit crude) illustThes circuit in basic idea, but has not been tested as it is only a suggestion for those readers with more time and patience to try a
feasibility study. It may not in fact be practical due to drifting unless highly stable circuits are used. It is analogous to an inertia based navigation system which is reset once
only, and from then on everything is calculated relatively, thus accumulating errors. The instrument may be physically difficult to play and certainly a rethink would be req-
uired for musical notation. It is also monophonic, as chords have not yet been consid-
But for those who are undeterred the operation is as follows: The key contacts are operatiod $\mathrm{S}_{1,2,384}$ and must operate in that
laber sequence. IC, IC, and 3 hold the current note in
their "hold" capacitors. When a key is pressed, S_{1} opens and isolates IC_{1}. S_{2} closes, selecting the interval required (plus/minus or zero) which is added to the previous note
from IC from IC_{1} using the summing amplifier $\mathrm{IC}_{2} \cdot \mathrm{~S}_{3}$
closes, thus storing this new note on IC_{3} closes, thus storing this new note on IC_{3}
which produces the required frequency from

the oscillator. S_{4} triggers the note envelope
shaper. S_{5} si the esest required at switch-on.
P. A. Tipping P. A. . Tipping
Charton
${ }^{\text {Charton }}$ Manchester

* In the equal-tempered scale, each of the tweive by a constant ratio which is the twelfth root of
$2(=1.059463094)$ This
constant ter $2(1.059463944)$. This constant derives from the
fact that in the scale there are 12 frequencies, of which the highest note, an octave above the lowest.
is of course $2 \times$ the frequency of the lowest. - Ed.
C.B. RADIO AND POPULATION DENSITY R. B. Hooper's letter in your February issue is
interesting. He's perhaps forgotten about the interesting. He's perhap forgotten about the
density of population here. England comes
second, after the Netherlands, with 900 second, after the Netherlands, with 900 people per square mile. Scotland, from where
I write, is No. 22 on the world's list , with 170 ; I write, is No. 2 is on the world's list, with 177 o;
but even that is heavily concentrated, in its central area. A lot of the rest is mountainous. Victoria, Mr Hooper's home-state, is Aust
ralia's most densely crowded! This happy region has 37 people per square mile, almost the same as Finland! His island-continent is itself at the end of the world's list. As it's
roughly the same area as the continent of roughly the same area as the continent of
Europe it can well afford the 'luxury' of citizens' radio, without 'mutual interference'.
With these facts in front of him With these facts in front of him, Mr Hooper
must realise that the authorities here, with must realise that the authorities here, with a
population of around 55 million, view with some foreboding just how many thousands
will apply for this 'privilege'! When was he will apply for this 'privilege'! When was he
ast here? If so, did he ever have the exast here? If so, did he ever have the ex perience of driving a car through the English
Midands? All the towns merge into one nother!
The USA, which he quotes, is No. 27 on the Australia, its vast area has mile! Like made c.b. radio both feasible and necessary In most of the UK one is within easy reach a telephone. Our communications system has, fairly recently, been extensively moder ised and is quick and effective.
King Canute would have been W. C. Ritson Stromness
Orkney

THE INTELLIGENT PLUG Two points regarding The Intelligent Plug your December 1979 issue: (a) it could be lethal; (b) it would need a licence, which would not be granted.
The danger arises from the $1 \mu \mathrm{~F}$ capacitor in
the transmitter circuit, practically between the transmitter circuit, practically between he neutral and earth lines (ironicaly the
authors state "for maximum safety"). However, if the neutral and earth connections ery good contact, the live mains would pass hrough the primary of the mains trans ive, and then pass through the $1 \mu \mathrm{~F}$, making the, earth and hence the case and micro-
processor live!

important but it is the approach to that
solution which creates the interest and ex citement.
David D. Clegg

WHAT'S SO NATURAL ABOUT e?
In Mr Finlay's interesting article "What's so
natural about e?" (December, 1979) graphs of natural about e?"' (December, 1979) graphs o
$y=4^{x}, y=3^{x}$, and $y=2^{x}$ are drawn and it is
shown $y=4, y=3^{x}$, and $y=2^{x}$ are drawn and it
shown that for each curve $(d y / d x) / y$ is equal 0 a constant,,$k(y=4 x: k=1.4 ; y=3 x: k=1.1$
$y=2^{x}: k=0.7$. Let the general form be $y=a^{x}$ $\left.y=2^{x}: k=0.7\right)$. Let the general form be $y=a^{x}$.
The problem then is to find a value, a, such hat $\mathrm{k}=1$
In Mr Finlay's Fig. 6 a graph of k is plotted gainst a. The value of a which makes k qual to 1 is found; this value of a is e. This ethod avoids drawing the interpolatio raph; it gives the result from the graph graph; in gives
drawn in Fig 5 .
Expressing it baldyy, the procedure is to graphs - any graph. Find the distance of th point of contact from the x-axis. This dis ance is e. Though this is simple to do, the we are trying to explain the importance of e it is better to suggest drawing tangents from the origin to each of the curves. We note tha is parallel to the x-axis. The different curve have this property: the distance of the poin contact is the same for all the curv
The normal procedure would involve differentation, but since, quite reasonably in his proach, Mr Finlay wants to avoid this, let us use his values of k. Let us take the graph
$y=3^{x}$, for which $k=1.1$. At the point of contact for this curve (P in my diagram) $y / d x=P Q / O Q$. We know that $(d y / d x)$ $1=(\mathrm{PQ} / \mathrm{QQ}) / 1.1$. Dividing each side by PQ we have

$$
\begin{aligned}
& 1=\frac{1}{\mathrm{OQ} \times 1.1} \text { and } \\
& \mathrm{OQ}=\frac{1}{1.1}
\end{aligned}
$$

 value for e. (Using Mr Finlay's other values ar $k(0.7$ for $y=2 x ; 1.4$ for $y=4 \times$) we find a at Mr Finlay's values for k are accurate). The advantage of this method is that thants should realise from this approach
hat all curves of the form $y=a^{x}$ associated with e. A by-product of this method is that it can be used to show that This seems an ap $=1 / \log _{a} a$ e a. mention an occasion on which he took me by surprise. I wanted to compare the accuracy (or resolution?) of different calculators. It is
known that the limiting value of $x^{1 / x}$ tends to infinity is 1 . Using a scientific calculator, I wanted to find how large x could be betore the function $y=1$. Then I started to exp when $x \rightarrow$ infinity. When $x=2, y=1.414$. For what value of x is y a maximum? Trials on the calculator soon showed that the
required value of x is between 2.5 and 3.0 require trals soon of x is between 2.5 and 3.0 .
More trials Evaluating $d y / d x=0$ confirmed that it had
to be e. (In the differentiation, it is con-

venient to differentiate the log of the func-
tion rather than the function itself) tion rathe than the result should be e, but my experience of classical maths did not suggest that it might be e until. I had played with the calcula-
tor. I suspect that Euler would have tor. I suspect that Euler would have known it
all the time. Mr Finlay has written a valuable article which suggests a wide knowledge of the literature on e. I wonder whether he would have guessed it? Anyhow, I thank him
for his article. T. Palmer

Kew
Surrey
The author replies:
I thank Mr Palmer
I thank Mr Palmer for his kind remarks and
am greatly indebted am greatly indebted to him for contributing
to my museum of e-forcing graphical to my museum of e-forcing graphical
methods (by no means finished yet!) a simple and elegant one of drawing tangents from the origin against any number of $a x$ curves, as well as showing that $e=a^{1 / k}$. As he rightly
says, my k values for $a=2,3,4$ were approximate, and e will emerge more accuaccurate (e.g. by using the valus is more accurate (e.g. by using the values
the 'pure mathematician' on p.70).
The $y=x^{1 / x}$ function is a curious one in Several ways, including its y / x graph. This is
virtually zero up to $x \approx 0.4$ then rises denly and climbs smoothly, flattening out to a maximum value of ≈ 1.445, for $x=e$ as Mr Palmer states, and finally falls very slowly to
a value of ef a value of unity at $x=$ infinity. I wonder how
many other functions there are which show a many other functions there are which show a
somilar maximum or minimum related to e?
John C. Finlay

STAGGERED

OUDSPEAKER UNITS
Without wishing to add to the highly ana ture and correspondence under the general heading of "linear phase loudspeakers", I fee he following account, based on recent prac Durperience may be of interest. and treble "satellite" loudspeaker based on a line-source of three 7×4 in elliptical units
side-by-side with a line-source of eight 2 in side-by-side with a line-source of eight 2 in
diameter round cone tweeters, it was arranged that the degree of stagger between these two sources could be easily varied
during listening tests. Subjectively there was a very critical physical spacing which gave optimum clarity to high frequency detail in the programme material. Indeed, the adjust
ment was as conclusive as "peaking. migh-Q was as conclusive circuit. The interesting points that came out of this exercise were: (a) it is worthwhile allowing adjustment of the in mum degree of stagger is that which place the front edge of the speech coils approximately in line. range above 100 Hz was fed to the larger units and the af.. range above to the larger units
and ponents being series capacitors.
G. T. Edwards

Finesse Electronics
Reading, Berks.

What's so natural about e?

3 - Uses of e, including some in electrical science
by John C. Finlay

After discussing natural growth and decay and many of the phenomena in passes on to equations in natural vibrations. He ontinues with the operator j and series, looks at Euler's
 Trigonometrical Identity and de hree-part series with the history of the $a+j b$ type of representation.

The laws of natural growth and decay have been neatly summarized as 'The ate of growth is proportional to the tate of growth ${ }^{20}$. They are, mathe matically speaking, examples of solving ave already worked out that
for natural growth,

$$
\text { where } \frac{d y}{d x}=y \text {, }
$$

the solution is $y=\mathrm{e}^{x}$
and for natural decay

$$
\text { where } \frac{d y}{d x}=-y \text {, }
$$

we have $y=e^{-x}$
A closely related kind of natural growth, not explosive like e^{x} and the xpressed by $y=1-e^{-x}$. To see what this looks like we'll sketch out a set of useful exponential curves in the region around values of +1 and -1 for x and y, as shown in Fig. 17. These include our making mirror images of them on the underside of the x axis, $-\mathrm{e}^{x}$ and $-\mathrm{e}^{-x}$. Then to produce $1-\mathrm{e}^{-x}$ we lift the $-\mathrm{e}^{-x}$ curve bodily by 1 unit. This transfers the crossover point on the y axis from -
for $-\mathrm{e}^{-x}$ to the origin, so that for $1-\mathrm{e}^{-x}$ $y=0$ if $x=0$. Also we note that $1-\mathrm{e}^{-x}$ can never exceed a value of +1 and in fact never quite reaches it, no matter how large x is. The important bit (for positive values of x) is solidly lined in, growth becomes smaller instead of greater as x increases, and gradually dies away to nothing, so putting a definite limit on the final value reached. natural restrainer of sudden, exuberant and dangerous changes, and you will
recognize it as showing the rate after you switch on the electric fire (or the current builds up in an electromag net connected across a battery). e^{-x} also lined in for positive values of x, has its virtues, too. When you switch off the
fire, it stops the temperature from fal ling drastically, even though the fall is depressingly faster than the original
$\stackrel{\text { rise! }}{\text { Most of us probably think of growth }}$ and decay in terms of a time span, like and decay in terms of a time span, like
life itself. It may be short-lived (or transient) like a flash of lightning, or almost eternal, like some radioactive decay. Cases governed by the exponensciences, material and immaterial. In physics, Newton's law of cooling (as in the lounge we have just left unheated!) is familiar in heat studies Mechanical examples include the rate of aircraft speed against air resistance, th free decay of vibrations in a musica instrument or an unmusical machine and the damping of unwanted vibrations in mechanical instruments. The
last two remind us of a nalogous be haviour in electrical circuits with damped oscillations in spark transmit ters, car ignition systems, tv e.h.t generators, electronic flash guns and much else. Then of course there is the d.c. circuit and of capacitive voltage in the series RC equivalent, and the buildup of current in a gas-discharge due to the ionizing electrons.
The speed of growth of chemica ure, and the rate of change of solution concentrations due to diffusion are both ooverned by e. So also is radioactiv Yintegration, as recently mentioned. notany by the manner of growth of vegetable life such as trees or plants and even more remarkably by the formatio f daisy blossoms (florets), pinecones pineapple bumps and tree leaves, a whose radius steadily increases as it grows, like e^{x}. In the first article I mentioned the topic of population explo ions, an important preoccupation in bave come meds it in the prolificatio f their school rabbits! The famou Malthusian curve of population
production is of the same (depressing) shape 1. The equiangular spiral enters again in the shapes of various animal objects such as the nautilus shell (a mollusc) already mentioned, and horns, nails, hairs, tusks and claws. In the world of business and economics we have already met the Compound Interest Law. Anothe financial one deals with the deprecia multiple factories or shops and of mass-produced articles of a given kind, and industrial growth and decline in general. e may even control the price a house building plot, where this de-
pends upon how many have been sold already! Psychologists are convinced that rates of learning (in psychology, education and management) are ex ponentially controlled. So too are the rates of growth of religious which you can easily see if you assume that every fervent devotee converts two others to his views, and that they in turn do the same (which could letter sche of fatics in hi-fi, punk rock or whatever!). Perhaps the greatest of all the timerelated phenomena is our concept of time itself ${ }^{1}$. In recalling past events whether in your own lifetime or from
ages ago, you will surely tend to remember more facts in a given year, decade or century, the nearer it is to your own present day. This exponentia growth is curiously paralleled by the spreadogical periods.
Natural growth and decay contro many affairs which have no direct rela tion with time, especially in physics That weird factor entropy, which te rifies so many soars the processes of expansion and compression in gase and vapours, the work done and th pressures obtained. Heat transmissio is another customer for e, as in the mean changers and bearings. Talking of pressure, the atmospheric pressure a any named height above sea level drop off exponentially as you go further up (Halley's Law). Earnest mechanical students know that the tensions on the
two sides of a hard-driven pulley-bel pay homage to e, and that there ar diabolical relations involved in th

80
tresses found in thick cylinders and nells. Every husband who has been naged into the impossible task of have been tempted to ask her why the Grid cables between the pylons, and yet both of them, like the rest of us, have no doubt admired the graceful lines of a suspension bridge over the Forth, the
Severn or the Thames. Severn or the Thames.
the curve naturally produced by gravity pulling an evenly-formed line out of horizontal shape - a catenary (from the
Latin 'catena' $=$ chain) - and the Latin 'catena' $=$ chain) - and the
others, which have the added compliothers, which have the added compli-
cation of an almost horizontal roadway slung below, are pretty near it in shape. The catenary is formed by adding two exponential curves from Fig. 17, namely

Fig. 17. Some useful exponential curves.

Fig. 18. More exponential curves,
$y=\sinh x$ (left) and $y=\operatorname{coshx} x$ (the
catenary).
$1 / 2\left(e^{x}+e^{-x}\right)$. This curve, shown in Fig 18, is termed 'cosh x ', implying 'cos using a trigonometric ratio from the angle made with a rectangular hyperbola (Fig. 16), in the same way that a
cosine can be defined from the cosine can be defined from the angle
made with a circle. Similarly 'sinhx' (pronounced 'shine'), also shown in Fig 18 , is made up from half the difference between e^{x} and e^{-x} and is the hyperbolic equivalent of $\sin x$
Electrically, sinh and cosh loom large
(not to mention tanh!) whenever we not to mention tanh!) whenever we or ladder of identical 3-or 4-terminal networks, as in transmission lines (d.c. or a.c., power or communication) with
evenly distributed leakage or inductance and capacitance, and in wave
filters ${ }^{22}$ and attenuators (and we mustn't forget that attenuation can be rules OK! - as-the natural log equi valent of decibels, often hal \log equi simpler exponentials handier ${ }^{22}$. The average magnetic field strength within a solenoid, the inductance of a short coil, the inductances and capacitance of both parallel and concentric conduc tors, the dielectric stress gradient acros a valve diode and the forward current in a semiconductor diode.
When light is obscured by passing it through a filter of some kind its intensity is reduced exponentially as the filter
thickness increases steadily Astro nomers have long known that the brighter a star is, the bigger is its mag nitude, and today the brightness can be accurately measured and the mag formula ${ }^{1}$ Kulated from a logarithmic know all about the brightness of light, and that while it waxes or wanes in steps that seem even to the eye or in their exposure effect on a film, the brightness is in fact increasing or deubles or halves the light, just like the very first series we looked at (to check this, look at your camera iris and compare the hole areas at various $f \cdot n o$ settings).
The last two examples are just one case of the human sense responses, in
which the eye responds to brightness and the ear to sound volume and to pitch (frequency), all in a logarithmic manner, making it possible for us to distinguish very weak sensations and to
be mercifully protected against ex tremely strong ones. The same law discovered by the 19th century psycho logists Weber and Fechner, applies to other senses, too, as of touch or press cire in comparing wish in the two
hands Earlie
Earlier I mentioned the shape of a grand piano, determined by the varying
lengths of its strings (Land ${ }^{1}$ makes an interesting comparison between it and the FA Cup rounds as a knock-out competition). The uneven spacing of
the frets in fingering a guitar follows an exponeqtial curve, as does the corresponding way in which a fiddler handles his strings or a trombonist moves his horn, beloved of agour he exponential the somewhat colder world'of statistics, e governs such matters as the Poisson distribution and normal distribution bability A.

Another class of differential equà-
tions, the second order, such as

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+a \frac{\mathrm{~d} y}{\mathrm{dx}}+b y=0
$$

is of great importance to engineers. We meet them most commonly in dealing mechanical or electrical, and x is then a

$$
y=k_{1} \mathrm{e}^{\lambda 1 x}+k_{2} \mathrm{e}^{\lambda 2 x}
$$

which looks very simple after what w did earlier, until you realize the com λ_{2} and a, b, and the three well-known cases that can result (overdamped, critically damped, underdamped). The last one is especially diabolical, an
therefore likely to be interesting therefore likely to be interesting, be
cause it lands us with new type of ex ponent for e, involving the square root of a negative number.
Now that last factor alone is not
unfamiliar to electrical unfamiliar to electrical engineers since
we represent it by j and use it a lot in a.c. we represent it by j and use it a lot in a.c.
circuit analysis. But what about e^{e} ? This quantity is very important to students of a.c. theory and to electrical engineers who work with rotating machinery Now why should this be so? Of what
possible practical value is an imaginary possible practical value is an imaginary
power of a transcendental number? As usual, it is generally introduced as a mathemagician's trick, a sorcerer's device that will unlock the door to severa
mysteries And so it does mysteries. And so it does. earlier for e^{x} by fitting it to $\mathrm{e}^{\mathrm{i}^{i}}$, replacing x by $j \theta$.
Then $\mathrm{e}^{j \theta}=1+j \theta+$
$j^{2^{2}} \frac{\theta^{2}}{2!}+i^{\theta^{3}} \frac{3^{3}}{3!}+j^{4} \frac{\theta^{4}}{4!}+j^{5}{ }^{\theta^{5}}+j^{6} \frac{\theta^{6}}{6!}+$ Now all of you know from your a.c.
theory, as well as by simply multiplying theory, as well as by simply multiplying
a few $(V-1)$ s together, that $j^{2}=-1 \quad j^{3}=-j j^{4}=1 \quad j^{5}=j \quad j^{6}=-1$
so that we can sort out the series and divide it into two neat rows
$\mathrm{e}^{\mathrm{j} 0}=-\frac{\theta^{2}}{2!} \quad+\frac{\theta^{4}}{4!} \quad-\frac{\theta^{6}}{6!}$

$$
+j \theta \quad-j \frac{\theta^{3}}{3!} \quad+j \frac{\theta^{5}}{5!}
$$

Now the first line turns out to be the series for calculating $\cos \theta$, and the
second line for j times $\sin \theta(\theta$ in radians which I would like to have known all those years ago!
so $\mathrm{e}^{i \theta}=\cos \theta+j \sin \theta$
This is usually credited to Euler, that master-builder of series, and so is tity. Interestingly, though, this formula (1748) was anticipated by an Englishman, Roger Cotes, who in 1714 published a theorem on complex numbers ${ }^{23}$ which would modern form as
$i \theta=\log$
All this was long before a.c. or even a commercial electric power supply of any kind had been thought of, so what
does it mean today? Let's multiply all does it mean today? Let's multiply all
through by r, for a good reason that will appear in a moment, so that
$r^{\text {ej } \theta}=r \cos \theta+j r \sin \theta$
The trig. side shouldn't bother anyone because it is a clear instruction to build
horizontally to the right followed by
$r \sin \theta$ vertically upwards, as in Fig. 19.

Fig. 19. The meaning of
$r e^{\theta=}=r \cos \theta=j r s i n \theta$
Then it is obvious that we have a rightangled triangle with angle θ in the position shown and a hypotenuse of length
r. So what about reit? It is now clear that ${ }^{r}{ }^{\text {ef }}$. So wh is an 'operator', giving us an instruction about the direction in which r, thought of as a radius arm revolving about a pivot at its lower end, is to point, namely at a positive angle θ above the it is a polar operator.
If you're still not convinced, and think that I glided too neatly over the problem by merely saying that the series adding $u p$ to $\mathrm{e}^{i \theta}$ comprised the two series for
$\cos \theta$ and $j \sin \theta$, I can do no better than refer you again to that prince of problem-solvers, Marcus Scroggie ${ }^{24}$, who first demonstrated in this journal many years ago that the series we de-
rived for $\mathrm{e}^{i f}$ can be literally plotted out in a phasor diagram. He makes $\theta=1$ (radian) so that

$$
e^{j \theta}=1+j 1-\frac{1}{2}-j \frac{1}{6}+\frac{1}{24}
$$

(which is about as far as it is worth going) and then plots out these values in turn, giving a spiralling path which
homes in on a point at unity distance from the origin and making a positive angle of 1 radian (about 57°) to the x-axis! In further confirmation he takes θ as 2 and shows that ${ }^{\text {ji }}$ still has its unity (about 115°) to the reference axis. Lons live the graphical solution!
You probably know that Euler (and all mathematicians following) used where electrical people (for obvious reasons!) prefer , and usually as $\mathrm{e}^{ \pm i x}=\cos x \pm i \sin x$
Here x is the angle, and if we make it radians ($=180^{\circ}$) we get
$\mathrm{e}^{\mathrm{in}}=-1+0$
or $\mathrm{e}^{\mathrm{it}}+1=0$
which is that marvellous mystical relation between the three weirdose, π and that I mentioned earlier. How wonderfully clear it looks now by definition to non-algebraic or transcendental, so also must π be (as we said earlier), since $\mathrm{e}^{i \pi}=-1$ and $i \pi$ cannot therefore b
not ${ }^{25}$
Many of you will know another iden tity entitled de Moivre's theorem:
$(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ De Moivre was a Huegenot refugee from France who came to England as a young man in 1685 , taught matheIsaac Newton and a member of the Royal Society and its French and German equivalents, worked for a firm of insurers and pioneered the actuarian profession in the calculations he carried
out for them. Not surprisingly, he made important contributions to the theory of probability. His theorem was published in 1722^{26} and has been described as the keystone of analytic geometry' ${ }^{27}$. It is
very useful if you want to work out very useful if you want to work out
half-forgotten trig. identities for multiple angles, such as $\cos 2 \theta=2 \cos ^{2} \theta-1$ and $\sin 2 \theta=2 \cos \theta \operatorname{sine} \theta^{24}$, by separating the in-phase and quadrature components (as we would say in phasor quaintly termed the real and imaginary parts by mathematicians, originally as long ago as 1637 by Descartes ${ }^{23}$ (to whom we also owe the idea of Cartesian express cos 3θ and $\sin 3 \theta$ in terms of $\cos \theta$ and $\sin \theta$ respectively
Then, using the electrical engineer's more familiar j notation,
$=(\cos \theta+j \sin \theta)^{3}=\cos 3 \theta+j \sin 3 \theta$
$=\left(\cos ^{2} \theta-\sin ^{2} \theta+2 j \sin \theta \cos \theta\right)(\cos \theta+j$ -
$=\cos ^{3} \theta-\sin ^{2} \theta \cos \theta-2 \sin ^{2} \theta \cos \theta+$
$j\left(2 \sin \theta \cos ^{2} \theta+\sin \theta \cos ^{2} \theta-\sin ^{3} \theta\right)$
Hence, equating in-phase parts,
$\cos 3 \theta=\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta$
$=\cos ^{3} \theta-3\left(1-\cos ^{2} \theta\right) \cos \theta$
$=\cos ^{3} \theta-3\left(1-\cos ^{2} \theta\right) \cos \theta$
or $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$
and, equating quadrature part
$\sin 3 \theta=3 \sin \theta \cos ^{2} \theta-\sin ^{3} \theta$
parts,
$=3 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta$
or $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$
both of these are standard results, and you get two for the price of one! for n positive (and was probably for n positive (and was probably only
aware of it in that form; it was Euler who proved that it was also true for negative and fractional powers ${ }^{29}$ and equated to thed $(\cos \theta \pm i \sin \theta)$
$(\cos \theta \pm i \sin \theta)^{n}=\mathrm{e}$
$=\cos n \theta \pm i \sin n \theta$
and Euler's Identity, already mentioned, is just the special case where $n=1$. At
the same simple level it is very handy for deriving identities of the sum or difference type, since the polar operator $\mathrm{e}^{\mathrm{j} \theta}$ (as we will now call it again) can be easily split into two single-angle operadifference angle For example suppose we want to obtain $\cos (A-B)$ and $\sin (A-B)$ in terms of A and B functions, then $\mathrm{e}^{i(A-b)}=\mathrm{e}^{\mathrm{i} A}$. $\mathrm{e}^{-j b}$
Now $\mathrm{e}^{\mathrm{A}}=\cos A+\mathrm{j} \sin A$
and $e^{-1 B}=\cos B-j \sin B$
so that $\begin{gathered}j(A-B)=\mathrm{e}^{i A} \mathrm{e}^{-j B}=(\cos A \\ +j \sin A)(\cos B-j \sin B)\end{gathered}$
$=\cos A \cos B+\sin A \sin B+j(\sin A \cos B$ but $\mathrm{e}^{(A-B)}=\begin{gathered}\cos A \sin B) \\ \cos (A-B)+j \sin (A-B)\end{gathered}$ from Euler's Identity A Hence, equating the in-phase parts $\cos (A-B)=\cos A \cos B+\sin A \sin B$ an equating quadrature parts, re again standard results. Many other sine and cosine problems can be sorted out by turning them int exponentials ${ }^{30}$. There are, of course many more advanced uses of the for
mula such as finding the powers o oots or complex numbers, phasors or position vectors (call them what you will!) and of real or non-complex numbers ${ }^{31}$, or deriving series for acculation of sines and cosines of any angle ${ }^{322}$. Jon M. Smith quotes man useful formulas and Hewlett-Packar procedures for handling complex func ions on a pocket calculator ${ }^{33}$, reco calculators all simplify conversion bet ween rectangular and polar co rdinates, which eases this sort of ana ordina
lysis.
In a
In a final fling of history, let us pay credit for the geometrical representa
tions of $a+i b$ (etc.) where it is due. The earliest useful attempt was published in 685 by Englishman John Wallis, whic used what we would now call the x-axis or the a part and drew perpendicular lines to it as required to erect the b part
but failed to use the idea of a y-axis ${ }^{34}$. It was not until much later that real pro gress was made by Wessel, Argand and Gauss ${ }^{35}$. Wessel was a Norwegian sur veyor who in 1797 published a paper in anish aded 'directed line segments' (vectors), for the first time, by referenc to two axes, one for 'real' numbers (x) and one for the 'imaginaries' (y), writte in the form a h. Summing and describe No doubt because of its obscure publication, Wessel's work was over ooked until a full century later, when was republished in French. In the who, like Wessel, was self-taught, had in effect rediscovered the principle, described in a book in 1806, but added to it the idea that multiplying by $V-1$ urned a vector produced a similar clockwise rotation. He also represented his directed line by the form $r(\cos \theta+i \sin \theta)$ where r is the length, and by $r=a+b i$ where a and b are mutually at right angles in the so ever until Gauss, the great German mathematician, physicist and astronomer, took a hand in the matter, actually coining the term 'complex number and using it in several papers
published up to 1831 , that the idea became generally accepted. He dispelled the unnecessary mystery about negative' and 'imaginary' numbers by
-
termed 'inverse' and 'lateral'. He was
also the first to represent $a+b i$ as a point and not necessarily as a vector, function theory. function theory.

Finale
Have you, like me, ever had a hangup
about e? Maybe you refused to believe about e? Maybe you refused to believe in the existence of this peculiar number, or even took an active dislike to every
formula in which it appeared? If so hope that by now your feelings towards e will have mellowed and indeed warmed, much as they may do in real life towards an old enemy whom you haven't seen for many years and whom time you meet e, perhaps indeed you will look upon it as a friend whose acquaintance is well worth cultivating and, if the thought is not too fanciful, Napier and all the others who have contributed to its understanding, smiling from their golden clouds in Paradise.
Could I make a special plea to any teacher of (or lecturer in) mathematics
who has taken the trouble to read through these articles? Please try to enliven your subject and give your students an incentive by revealing to them some of the glories of Nature and to do here, and as the very greatest of mathematicians have always done.
Finally, a request. Does anyone know of a simple mechanical model which brings out the value of e? I have looked
far and wide in vain for something which the infants could use (in place of their ubiquitous tin cans for finding π). The search is probably hopeless because, as I said at the beginning, e does not so readily reveal its secrets, and
some pundit will probably prove (at least to his own satisfaction) that no such model could ever be made. However, hope is eternal and progress lives upon it, and perhaps just one person's
imagination will be fired to provide this missing link, as has so often happened in the story of science and technology.

22. M. G. Scr

22. M. G. Scroggie ('Cathode Ray'). Essays in
Electronics, Ch how to use it), Iliffe 1963 .
23. K. Kline. Mathematical Thought from
Ancient to Modern Times, Ancient to Modern Times, pp.408-9, OUP
1972, (or Ref. 18 p.265). 24. Ref. 22. Ch. 8 pp. $73-8$ (e)
24. Ref. 23 , p. 982 .
25. Ref. 23, p. 982 .
26. Ref. 23, p. 429.
27. Ref. 6 , p. 359 .
28. Ref. 10 , p. 364.
29. See also L. Hogben. Mathematics for the
Million, 4th Edn. pp. $432-440$, Geo. Allen \& Million, 4th Edn. pp. 432-440, Geo. Allen \&
Unwin 1967. 30. Ref. 2, pp. $217-8,232$.
30. H. S. Rice R 31. H. S. Rice, R. M. Knight. Technical
Mathematics with Calculus, 2nd Edn. pp. 605-613, McGraw-Hill 1966. 325-Ref. M9, pp. 440-3.
31. Ref. 9, pp. 108.113 33. Ref. 9, pp. 108-113,
32. Ref. 23, pp. $594-5$ 34. Ref. 23 , pp. $594-5$.
33. Ref. 23, pp. $628-632$.

BOORS

Two-metre Antenna Handbook, by F. C. Judd
(G2BCX), is a mainly practical book for (G2BCX), is a mainly practical book for
amateurs using the 145 MHz band for the first time. A chapter on basic aerial theory is
followed by sections on omnidirectional and followed by sections on omnidirectional and
directional designs, with notes on construcdirectional designs, with notes on construc-
tion. A chapter on cables includes details of
matching devices, matching devices, connectors and rotators,
and the final chapter on measuring the and the final chapter on measuring the
performance of aerials includes some confidence-inspiring photographs of displays
from the author's from the author's polar plotting equipment,
using model aerials. The 157 page book is using model aerials. The 157 page book is
published at $£ 3.95$ in paperback by Butterworth and Company Ltd, 88 Kingsway, Lon-
don WC2B

The Theory and Servicing of A.M. F.M. and F.M. Stereo Receivers, by Clarence R. Green and Robert M. Bourque, is well explained by
its title. It contains a great deal of nonits title. It contains a great deal of non-
mathematical information on the operation of all sections of the equipment under dis-
cussion cussion, and goes on to suggest general a nd
specific methods of fault-finding in typical specific methods of fault-finding in typical
equipment, describing both semiconductor equipment, describing both semiconductor
and valve techniques. While the book is
American and the langual American and the language a little unfamiliar
in places, it will be found easy to read by in places, it will be found easy to read by
British service technicians. Circuit diagrams may be a bit more difficilult, since they are
drawn in the 'upside down transat antic drawn in the 'upside down' transatlantic
manner. The book contains 583 pages, costs $£ 16.20$ and is published in hardback by Prentice-Hall International, 66 Wood Lane
End. Hemel Hepstead, Hert. HP2
Complex Digital Control Systems, by Guthikonda V . Rao, is weighty in both senses of the
word. It is concerned in the main with datasampling digital control systems, in particular those used in video tape and disc recor-
ding equipment, on which Dr Rao is an as its subject might lead one to suppose, most algebra being concentrated in an early
chapter which surveys both analoge chapter which surveys both analogue and
digital control theory. Several sections on the control of video equipment are followed by a
chapter on the use of chapter on the use of microcomputer systems with which, the author remarks, digital
control systems are about to take a new turn control systems are about to take a new turn
altogether. Three appendices are concerned
with free with frequencrey synnthesis of oscillatarned,
high-speed phase-locked loops and the basic high-speed phase-locked loops, and the basic
concepts of feedback control systems. There concepts of feedback control systems. There
is a seful bibliography. This beautifully-
produced book contains produced book contains 516 pages, costs
£27.40 and is published by Van Nostrand $£ 27.40$ and is published by Van Nostrand
Reinhold Ltd, Molly Millars Lane, WokingReinhold Lt
ham, Berks.
The American Radio Relay League has sent
us their two most reat TheAmerican Radio Relay League has sent
us their two most recent publications, the
first being the prestigious Radio Amateur's first being the prestigious Radio Amateur's
Handbook for 1980. This one is in a larger Handbook for 1980 . This one is in a larger
format than before, and several of its chapters have been revised. It is impossible to
give a list of its contents it is enoug to give a list of its contents; it is enough to say
that any amateur radio enthusiast would be that any amateur radio enthusiast would be
ill-advised to pursue his hobby without it. The second offering from ARRL, Weekend
Projects, is a collection of Projects, is a collection of reprinted con-
structional articles from OST, selected for structional articles from QST, selected for
their cheapness and simplicity. As the editor remarks, there is a decline in the home-
building of building of amateur radio equipment due to
the high cost of components and lack of time. the high cost of components and lack of time. cheap 'quuickies' for the shack, and this is the
reason for the book. Handbook: $\$ 12.50$ ($\$ 18$ reason for the book. Handbook: $\$ 12.50$ ($\$ 18$
clothbound). Weekend Projects: $\$ 3.50$. The clothbound). Weekend Projects: \$3.50. The
American Radio Relay League, Inc.,
Newington Connecticut Newington, Connecticut 06111, USA.

Senatore Marconi was in trouble with the question are received in London as loudly as
newspapers and popular science publications
those from Paris, the power newspapers and popular science publications
in the early part of 1920. Many operators were at a loss to explain ' X 's' or atmospherics are Marconi expressed the view that, since
identical 'signals' were received at widely identical 'signals' were received at widely
separated points on the earth, the most likely sources were at a great distance and possibly
well outside the erth well outside the earth, meaning natural
sources, of course. This remark was joyfully sources, of course. This remark was joyfully
seized on by Fleet Street, who interpreted it as meaning that playful Martians were
transmitting to us Marconi denied that transmitting to us. Marconi denied that he
meant anything like that, but it was too late - the controversy was well under way and its initial head of steam was maintained by the press, who found the story too good to
worry much about the facts. A succession of articles appeared, and the one in our April 3, 1920 issue (we were then
fortnightly) contained a piece by Philip fortnightly) contained a piece by Philip
Coursey and the report of the presidential Coursey and the report of the presidential
address to the Wireless Society of London by
A.A. Campbell Swinton, F.R.S. His remarks A.A. Campbell Swinton, F.R.S. His remarks
on the subject went as follows: on the subject went as follows. "Perhaps it might with advantage be
pointed out that the intensity of received wireless signals varies inversely more or less as the square of the distance between the
source and the point of recention so if we suppose the mysterious signals in question originate on the planet Mars, the power of
the sending apparatus must be of prodigious the sending apparatus must be of prodigious
dimensions. For instance, if the signals in
question are received in London as loudly as
hose from Paris, the power employed in Mars must be greater than what is used in
Paris in the proportion of the square of 200 Paris in the eproportion of the square of $200-$
the rough distance in miles from Paris - to the square of $49,000,000$, the distance in miles
from Mars. from Mars. HP; so that unless the inhabitants of Mars have improved methods of directional sending greatly surpassing our own, the power
used on Mars to give equal effects in London must be about $60,000,000,000$ times great as in Paris or say, $12,000,000,000,000 \mathrm{HP}$.
This certainly seem a fairly large This certainly seems a fairly large amount signalling purtooses and would entail the use of a Morse key of ample dimensions.
Surely a much more reasonable supposiSurely a much more reasonable supposi
tion is that the so-called signals originate in the sun where natural outbursts of electro magnetic activity exceeding in amount even
this stupendous horse-power are, it is known, of not infrequent occurrence. Indeed, our great luminary is continually radiating into
space some ten thousand horse-power per space some ten thousand horse-power per
square foot of its surface, and as its diameter is 865,000 miles there area a great many sauare
feet, and the total horse-power it radiates in feet, and the total horse-power it radiates in toto is something altogether enormous. It il
thus evident that even comparatively smal ebullitions on the sun's surface may well cause disturbances on the earth amply suf-

Trenant Estate, Wadebridge, Cornwall PL27 6HD Tel: (O20881) 2031 Telex: 45451

Electronic components from Rendar
$B=1$ Lighted switches . 'Minitop' miniature switches LED indicator lights - Fuse holders

Switches-toggle, slide, rocker,
push-button - Cable connectors

Binding posts. Phono plugs and sockets Terminals . Miniature jack plugs

Valve sockets. Appliance plug connectors Mains connectors' Coaxial components.
The vast range of components now available from Rendar include West German, Swiss and Japanese products which all conform to international state-of-the-ant specifications.
Call Tony Lane now for a quotation!

wW - 084 FOR FURTHER DETAILS

Quantum Electronics

NEW PRODUCTS - NEW PRODUCTS

PRE-AMP \& POWER AMP KITS

MOVING-COIL \& PRE-AMP MODULES

POWER AMP MODULES AND SUPPLIES

 IA STAMFORD STREET, LEICESTER. Tel. 546198

Improving photodiode camera signals

Shading correction for array scanner used in chromosome analysis
by Daryll K. Green MRC Clinical and Population Cytogenetics Unit, Edinburgh

The circuit described corrects signals
for the shading effects which occur in a photodiode array camera used for detecting stained chromosomes in dividing blood cells. Correction is needed because both the differences
in photodiode sensitivity in the array and the illumination shading are greater than the chromosome image contrast. Cost of components is a fraction of the cost of the photodiode array camera

Most photodiode array scanners show some non-uniformity of diode sensitivity. Quite often subjects which are imaged onto any type of scanner are
non-uniformly illuminated where the illuminating light level is high, giving rise to a high signal-to-noise ratio, and the image contrast is greater than either diode or illumination shading effects, the detection and measurement of sub-
ject features with a photodiode scanner ject features with a photodiode scanner
presents no problem. The difficulty which prompted the building of the shading corrector described here is the detection of stained chromosomes imaged through a microscope where
both the differential diode sensitivity and the illumination shading are for the most part greater than the chromosome image contrast. A circuit for correcting the photodiode signals for these shading effects is explained. The corrected pho-
todiode scanner forms part of a machine used for automatically detecting dividing blood cells on a microscope slide preparation

Fig. 1. Chromosomes in a blood cell are shown on this microscope slide in the circled area, which has a diameter of about $50 \mu \mathrm{~m}$. The drawn horizontal line represents a scan traversing the image on
the photodiode array. Large dark objects the photodiode array. Large dark oblects
in this field of view are nuclei of blood cells which are not dividing.

Fig. 2. Oscilloscope trace of the 256-diode array scanner signal
corresponding to the scan line marked in Corresponenting to the scalical scale is $200 \mathrm{mV} / \mathrm{cm}$; horizontal scale is $30 \mu \mathrm{~s} / \mathrm{cm}$.

Fig. 1 shows a photograph of a typical field of view from a microscope slide analysis. The cells of primary interest are similar to the one which is circled in the figure. There the chromosomes are
well separated and randomly distributed in an approximately $50 \mu \mathrm{~m}$ diameter circle. On average there are about 10 cells of interest, together with about 10,000 undividing cell nuclei
similar to the plain circular objects seen similar to the plain circular objects seen
in Fig. 1, on each square centimetre of slide.

The scanner signal from a 1 -inch In tegrated Photomatrix Ltd 256 linear dode array and signal processor the microscope depends in part on th speed at which the cells of interest can efound. It is therefore important to acceptable geometric resolution and signal-to-noise ratio of the microscope and scanner combination scanner speed of one scan per 300μ s and a scanned field width of 384

microns. The microscope slide is at the same time driven back and forth under
the control of a stepping motor at 90° to the scanner direction and at a speed of 5,000 microns per second. uniformity of diode array signal voltages arises out of the slide illumination and imaging system (Fig. 3) which comprises a 100 W quartz iodine

Fig. 3. Path of light through microscope
to a photodiode in the array
Fig. 4. Schematic diagram of the loading and recirculating circuit for correction
factors. Scan pulses occur every 300 microseconds; photodiode pulses occur every 1.17 microseconds. The ready pulse occurs approximately 20 microseconds after the convert pulse
microscope lamp with the usual condenser, objective and projection eyepiece optics. At each stage in the intensity due to the imperfect transmission of the optical components across the whole field of view. Maximum transmission is usually along the optical axis. A lesser component of signal non-
uniformity is the different uniformity is the differential photodiode
sensitivity, which is specified as 5% by the manufacturers, though in practice only one or two diodes differ in sensitivity from their neighbours by this amount.
The magnitude of signals from large chromosomes exceeds the 5% senmuch less than the observed 2.1 il lumination variation. Small chromosome signals are obscured by both. In therefore, detection of chromosomes and the measurement of their transmissivity is very nearly impossible.
Shading correction theory When there is no object on the diode a signal voltage $V_{i o}$ is measured. When an object of transmissivity " t " is maged onto the $i^{\text {th }}$ diode a signal voltage V_{i} is measured. It follows that
It is desired that a shading correction be applied to V_{i} such that a measurement of " t " is independent of diode position, that is $t=V_{i} / V_{o}$.
where V_{0} is a constant voltage representing the flat response of a perfect system. Comparing these two equations we see that the shading corrected voltage V is given by
Each diode voltage therefore must be multiplied by a factor $\left(V_{o} / V_{i o}\right)$ where V_{o} is an arbitrary constant voltage and $V_{i o}{ }^{\circ}$ is the uncorrected signal voltage for each diode for a clear image field. It will be seen later that V_{o} is set to the maxi-
mum value of $V_{i o}$ and is relabelled E_{o}.
 held in digital form in a 256 -element shift register which is synchronously recirculated with the diode array
signals. The number of bits required in signals. The number of bits required in
each of the shift register elements is roughly determined by the average signal-to-noise characteristic of the diodes. This amounts to about 25 millivolts in a full saturation voltage of 5
volts, which is one part in 200 An 8 -bit binary correction factor is therefore more than adequate and fits in well with a wide range of 8 -bit commercial analogue-digital and digital-analogue each diode is loaded into a 256×8-bit static shift resister which is then recycled synchronously with the original diode signals. The circuit for loading and recycling the correction factors is schematically shown in Fig. 4. Loading
the shift register in one scan of the array camera, which in this example occurs in 300 microseconds, would require an approximately 1 microsecond analogue-to-digital conversion for each
diode correction factor. Though this is diode correction factor. Though this is
possible it is expensive. For this reason a simple timing circuit is used, such that during a whole scan time of 300 microseconds only one diode correction actor is sampled, converted and loaded taken in sequence and an extra scan time is allowed at the end to give the final diode in adequate conversion time. The total correction set-up time is
therefore $300 \times\left(256+{ }^{1}\right)$ therefore $300 \times(256+\underset{\text { microseconds, which }}{ } \times \underset{ }{+1})$ 77 milliseconds.

Detailed circuit

In practice the correction factors $E_{o} / V_{\text {t }}$ will always be greater than or equal to unity, which would cause most analogue divider circuits to overflow. There
are several ways of overcoming this problem such as the following:

1. Reduce E_{o} by a fraction " f ", store correction factors $\left(f E_{0} / V_{i o}\right)$, then multiply the corrected diode signals with a or $1 / f$ to form:
$V_{i}(1 / f)\left(f E_{o} / V_{i}\right.$
Store correction factors $\left(V_{i /} E_{i}\right)$, the divide diode dignals with these factors to form: $V_{i} /\left(V_{i o} / E_{o}\right)=V_{i}\left(E_{o} / V_{i o}\right)$. 3. Store correction factors $\left(E_{o}-V_{i o}\right) /$
V_{i}, then multiply diode signals with $V_{i o}$, then multiply diode signals
these factors and add V_{i}, to form $V_{i}\left(E_{o}-V_{i o}\right) / V_{i o}+V_{i}=V_{i}\left(E_{o} / V_{i o}\right)$. The actual method adopted is the las of these options. Fig. 5 shows the com plete shading correction circuit. Diode each scan and the diode clock signals occur each time a diode video signal is ready for processing. Both pulses are approximately 500 ns which is half the
duration of each diode signal. The start duration of each diode signal. The start
circuit is designed to begin accumulation of correction factors at the second

Fig. 5. Complete circuit of the shading correction system

Fig. 6. The corrected diode array signal for the scan line shown in Fig. 1
diode zero signal occurring after or tors are recirculated in synchronism during the start button is pressed, thus giving a clean start. Correction factors
are then counted and stored in the shift are then counted and stored in the shift register at the rate of one per scan.
When the scan counter is full further diode zero pulses are blocked and the diode clock counter must be coincidentally full twice before the correction circuit closes down and correction fac-
ors are recirculated in synchronism
with the diode signals. Notice that the same amplifier is used to set up ($V_{i o}$ E_{o}) which is sampled, held and formed into $\left(E_{o}-V_{i o}\right) V_{i o}$ and to produce the
final corrected and offset output of final corrected and offset output of
$V_{i}\left(E_{0} / V_{i o}\right)-E_{o}$. The final output is $V_{i}\left(E_{0} / V_{i o}\right)-E_{o}$. The final output is raverse the scanner which in this in stance has certain advantages for later signal processing. Fig. 6 shows the array scanner signa of Fig 2 after multiplication with recir previously set up from a clear image field. The chromosome signals can now be detected and measured by compar son with a fixed threshold voltage. Although this shading correction author's own need to squeeze the last drop of signal out of a relatively cheap orm of scanner using a low light level, there must be a host of other image processing problems where it is import
ant to obtain an accurate densitometric measurement of the scanned material The component cost of this refinemen to a standard IPL linear array camera is a fraction of the camera cost and is
falling by the month, and all of the foregoing remarks apply equally well to other conventional or c.c.d. linear array scanners.

The author wishes to thank Roy Bayley and Denis Rutovitz for thei helpful contributions to this article.

Mercury switch for parallel-tracking pickup arm

and turn other end in a vice and file square to .2in. and 1.3in. Drill a hole to suit guage of wire (e.g. 22 s.w.g.) in flattened portion. Insert short pieces of nickel wire into place, and apply a spot of Alraldite to secure. Bend the ends of the electrodes as indicated. Hold both electrodes together side by side in a small vice or pliers. Twist into final shape. Glue
temporarily with "superglue" Test for electrical isolation.

Continued from page 63
K. Assemble pivot cups in switch cas assembly for size and freedom of movement. If necessary dismantle electrode assembly and pivot cups and mercury ball on trial basis and check the correct action takes place. The electrode assembly can then be permanently fixed with Araldite instead of "Superglue." Now remove pivot cupts and solder solder 12 in. of Litz wire to three-channel electrodes taking care not to disturb their position. Re-assemble switch, with some rapid-setting Araldite on the lid. This gives you about 3 min to manoeuvre the
lid. Give a final mechanical and electrical check before glueing on the front part of the lid, using Araldite.

Inject the mercury ball via filler hole with $1 \mathrm{~m} /$ syringe. Flush with propane gas and plug filler hole with $8 B A$ steel screw.
Switch is now ready for testing If too sensitive is now ready for testing. If too sensitive, shake mercury out until there is and ball. Extra mercury can be injected to reverse this process.
Finally, fix the completed switch to the lower arm with liberal amount of Araldite.
L. Shape rear pole for magnet by trial and error to give no lateral force on tracking arm over 1° each side of the central Masition. Radius shown is nomin lamination.

CHIRCUITT IDEEAS

Thyristor light controller

 Designs for sound-activated light controls often use zero-voltage switching to reduce r.f.i., but this technique off. The lighting effect can be improved by providing a level control with a pair of back-to-back thyristors as shown. If the rectified output from a bandpass filter is between the thresholds of the comparators, only one thyristor is trig-gered and the lamp operates at a gered and the lamp operates at a
reduced brightness. When the output is greater than the upper threshold, both thyristors are triggered and the lamp operates at full brightness. Sync. pulses are derived from the mains input and
ensure that the thyristors are triggered only at the mains zero-crossings. P. M. Jessop
W. Midlands

Improved tone contro Many audio amplifiers use a Baxandal one control network around a single transistor as shown. With this arrangecontrols are flat but, if bass or treble boost is required noticeable distortion ften arises. This problem can frequently be overcome by providing the original transistor with a bootstrap ped collector load. With an inverted mitter follower, the increase in gain should be 2 k 2 and the bias resistors must be adjusted to restore the original d.c. conditions
G. Hibbert

Oxford

Continuous a-to-d

converter

After several months experience with the a-to-d converter published in March 1979, we have found that timing is less is used and clocked through MC1407 is used and clocked through two muloutputs each clocked through one multivibrator. The circuit shows a modification from the output of the MC1407 to the counter inputs. Data appearing at the output of the counter is only correct
near a specific phase of the clock. For near a spectic phase of the clock. For
recording the data under certain conditions. such as maximum amplitude, or at specified times, always AND the clock through a variable delay with the sampling.pulse, so that correct data is J. E. Dahl and
J. D. Whitehead

University of Queensland

Australia

Battery charger protection

The rectifiers in an unprotected battery charger can be destroyed by shorting the connecting clips or incorrectly connecting them to the battery. Although a
fuse is effective it has to be replaced to restore protection. This circuit prevents current flow unless a correct voltage is present at the terminals. The s.c.r. is fired by the collector current from the
transistor as each half cycle of the rectified voltage rises above the battery voltage. If no voltage is present, due to an open or short circuit, or a low voltage because a 6 V battery has been con nected, or a wrong polarity, the transis
not conduct. Reasonable overvoltages will not cause damage because the base rating, and the s.c.r. will become reverse biased. The circuit can be added to an existing charger but the transformer needs an extra IV to compensate for the voltage drop across the s.c.r. By
switching to a lower value of R, together with a lower transformer voltage, the circuit can be used with dualvoltage chargers.
R. H. Bennett Christchurch

Voltage follower with

 adjustable zero-offset In the circuit, R_{v} is bootstrapped by the so that signal amplitude and waveform are preserved along the track. Therefore, any d.c. level can be selected between the gate-source voltages. Voltagegain is virtually unity and the distortion is negligible. Large-signal bandwidth is several megaHertz, which makes the circuit superior to conventional op-amp voltage-followers. Output impedance is high, but this can be redur R. D. Smith

Gallowgat
Aberdeen

A circuit idea in June 1978 uses only three i.cs to provide a divide-by-three
circuit This number can be reduced still circuit. This number can be reduced still
further with the circuit shown. A divide-by-six output with an equal mark-to-space ratio is also available at (d) and, by connecting this output to the first flip-flop in the 7492, a divide-bytwelve out
M. Rocha
University of Porto
Portugal

NEW PRODUCHTS

92

Space/Satellite/Military spec. background guarantees Merrimac reliability

Merrimac reliability.	
Since 1967, Merrimac has	BALANCED MIXERS
	POWER DIVIDERS
ms designed for more than	PHASE SHIFTERS
plications.	ATTENUATORS
Many other Merrimac signal	DIRECTIONAL COUPIERS
ds of military aircraft - high	drenio Ters cuplens
ty has been a common	hybrio tees
inator.	HIGH POWER CIRCULATORS
	IFIMICROWAVE SUB SYSTEM
prehensive standard produc	COMP
or signal processing	IMAGE REJECT MIXERS
seven hundred and fifty catalogue	SSB MODULA
Is from DC to 18 CH	QUADRATURE COUPLERS
stripline or ferrite technology. An	AMPLIFIERS
neet you	
stom designed derivatives of	
se products which surely will. Pascall in-depth service and	Quadraphase modulators
advice ${ }^{\text {Pascall in-depth service and }}$	
on prompt deliveries, an efficient technical and advisory back-up plus expertise on application	
problems. Get the facts on Merrimac	
Pascall Electronics Limited	
Hawke House, Green Street,	
Sunbury-on-Thames, Middlesex TW16 6RA	

Write or ring toamic range'

Wayne Kerr Radiord audio test equipment can set the standards
in broadcasting stations, recording studios and wherever rapids
 - Wayne Kerr Radford

wW - 084 FOR FURTHER DETAILS

Toroidal Transformers

MADE IN OUR OWN FACTORY AND READY FOR PROMPT DELIVERY In designing and developing our own very efficient power amplifiers,
it became essential to provide power supply units able to maintain our accepted high performance standards. Ideally, we knew that with the best solution to the problem. So we decided to design and make our own. Now we have a well organised manufacturing division devoted exclusively to making these special transformers and are in a
position to offer a range of useful values at keen prices and fo prompt delivery.

Yet another new development from I.L.P
(1) - TRANSFORMERS

$15 V \mathrm{VA}$	$30 V \mathrm{~V}$	$\mathbf{6 0 V A}$	$120 V \mathrm{~V}$	180 VA	300 VA
$2 \times 6 \mathrm{~V}, 1.25 \mathrm{~A}$	$2 \times 6 \mathrm{~V}, 2.5 \mathrm{~A}$	$2 \times 6 \mathrm{~V}, 5 \mathrm{~A}$			
$2 \times 12 \mathrm{VV} 0.62 \mathrm{~A}$	$2 \times 12 \mathrm{~V}, 1.25 \mathrm{~A}$	$2 \times 12 \mathrm{~V}, 2.5 \mathrm{~A}$			
$2 \times 15 \mathrm{~V}, 0.5 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 1 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 2 \mathrm{~A}$	$2 \times 15 \mathrm{~V}, 4 \mathrm{~A}$		
$2 \times 20 \mathrm{~V} .0 .3 \mathrm{~A}$	$2 \times 20 \mathrm{~V} .0 .75 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 1.5 \mathrm{~A}$	$2 \times 2 \mathrm{~V}, 3 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 4.5 \mathrm{~A}$	$2 \times 20 \mathrm{~V}, 7.5 \mathrm{~A}$
			$2 \times 25 \mathrm{~V}, 2.4 \mathrm{~A}$	$2 \times 25 \mathrm{~V}, 3.6 \mathrm{~A}$	$2 \times 25 \mathrm{~V}, 6 \mathrm{~A}$
			$2 \times 30 \mathrm{~V}, 2 \mathrm{~A}$	$2 \times 30 \mathrm{~V}, 3 \mathrm{~A}$	$2 \times 30 \mathrm{~V}, 5 \mathrm{~A}$

SIMPLY AHEAD - and staying there

 Enquiries toTHE TRANSFORMER DIVISION I.L.P. ELECTRONICS LTD | Graham Bell House |
| :--- |
| Roper Close, Canterbury Kent CT2 | Telephone: (0227) 54778. Telex: 966780

RADIO SHACK LTD for DRAKE

Ham Bands with $1.5-30 \mathrm{MHz}$ receive with built-in 150 MHz frequency counter plus option.of 0.1 .5
transceiving application $1.8-30 \mathrm{MHz}$

RADIO SHACK LTD

For Communi
Trio testgear.

 1.2. Saturcay y we are open 9.12 .30 only World wide expor

RADIO SHACK LTD

188 BROADHURST GARDENS, LONDON NW6 3AY

Explorer/85

Professional Computer Kit

FEATURES INTEL 8085 cpu FLEXIBILITY: Real flexibility at LAST
The EXPLORER/ 85 features the Intel 8085 The EXPLORER 88 features the intel 8085 cpu
100% compatible w with all Merostr BASI Mother Board (Level A) with $2 \mathrm{~S}-100$ pads expandable to 6 (Level C . 2 K Monitor ROM WITH 1 K Video RACEUSER RAM ONBOARD S-100 8K Microsoft BASIC in ROM or Cassette EXPANSION

STANDALONE FULL ASC11 Keyboard Terminal, 32/64 characters per binary counter/timer. Direct interface for any S - 100 Board. FULL Buffering decoding for $\mathrm{S}-100$ Bus pads, wait state generator for
slow memory. Each stage has separate 5 V 1A regulato for

 expandable to meet your own requirements with easy to obtain $\mathrm{S}-100$
peripherals. EXPLORER/85 can be purchased in individual levels, Kit form or wired and tested $O R$ as a package deal as above.

16k Dynamic RAM Kit
Expandable to 64 k on one S - 100 board in 16 k increments, designed for 16 K RAM Kite...ration utilling the most advanced RAM controller
16 K RAM Expansion Kit to expand the aboue up... $\mathrm{fl39}+\mathrm{VAT}$ 16k RAM Expansion Kit (to expand the above up to 64 k ,
in 16k increments) $£ 89.9$ VAT

NOW :- EXPLORER/85 with NORTH STAR FLOPPY DISCS

Explorer/85 up and ready to go (as illustrated)

orth Star Double Density Disc System, 3 - driv
 ontroller and a Single $5 \% / 4$ " Drive with regulator 180k byte......... 5500 TSE - PRINTER, 80 character unidiriectional variable density traction - friction fed etc. $£ 45$

SEND SAE FOR COMPREHENSIVE BROCHURE Please add VAT to all prices (except manuals), P\&P $£ 2$. Please make cheques
and postal orders pay abbe to NEWTRONICS or phone your order BARCLAYCARD, ACCESS number. We are now open for demonstrations and Sales, Monday-Saturday, 9.30 a.m.
6.30 p.m. Near Highgate Underground, on main A1 into London.

Simply ahead
 I.L.P's PROVEN RANGE OF HIGH

Why toroidal?

Toroidally wound transtormers are more compact
than their conventionally laminated equivalent than their conventionally laminated equivalents,
being only half as high hand heavy. Their circular
protile ensures greater operating efficiency and being only half as high and heary. fheir circular
protile ensuress greater operating efficiency and
as such they are particuarl valuable heavy
a suc phay as such they are particularly yaluable in heavy
duty applications. We have our own production
section for winding and making toroidal trans-
 after type at competitive prices. Four of the large
models in our range are now supplied with this
type of transtormer.

PRODUCTS OF THE WORLD'S FOREMOST SPECIALISTS IN ELECTRONIC MODULAR DESIGN

and staying there PERFORMANCE MODULAR UNITS

VALUES OF COMPONENTS FOR CONNECTING TO HY5 Volume $-10 \mathrm{~K} \Omega$ log.
Bass $/ T$ reble $-100 \mathrm{~K} \Omega$ linear. Balance $-5 \mathrm{~K} \Omega$ linear.

The HY5 pre-amp is compatible with all I.L.P. amplifiers and P.S.U.'s. It is $40 \times 15 \mathrm{~mm}$, and provides multifunction equalisation for Magnetic/ Ceramic/TUner/Mich and Aux Tape)
infuts, all with high overload margins. Active tone control circuits; 500 mV
oute Distortion at 1 at
Special strips are provided for connece. Special strips are provided for connec-
ting external pots and switching systems as required. Two HY5's
connect easily in stereo. With easy to connect easily in stereo. With easy to
follow instructions.

$£ 4.64+740$ VAT

THE POWER AMPLIFIERS

Model	$\begin{aligned} & \text { Output } \\ & \text { Power } \\ & \text { R.M.S. } \end{aligned}$	Distrion at 1 KHz	$\begin{array}{\|l\|} \hline \text { Minimum } \\ \text { Signal/ } \\ \text { Noise } \\ \text { Ratio } \\ \hline \end{array}$ Ratio	Power Supply Voltag	Size in mm	Weight in gms	Price V.A.T.
HY30	$\begin{aligned} & 15 \mathrm{~W} \\ & \text { into } 8 \Omega \end{aligned}$	0.02\%	80dB	-20-0-+20	105×50×25	155	$\begin{aligned} & £ 6.34 \\ & +95 p p \end{aligned}$
HY50	30 W into 8Ω	0.02\%	90dB	-25-0 +25	$105 \times 50 \times 25$	155	$\begin{aligned} & £ 7.24 \\ & +£ 1.00 \end{aligned}$
HY120	60 W into 8Ω	0.01\%	100dB	-35-0- +35	114×50×85	575	$\begin{aligned} & \text { £15.20 } \\ & +£ 2.28 \end{aligned}$
HY200	$\begin{array}{\|l\|l\|} \hline 120 \mathrm{~W} \\ \text { into } \Omega \end{array}$	0.01\%	100dB	-45-0-+45	$114 \times 50 \times 85$	575	$\begin{aligned} & £ 18.44 \\ & 1 \end{aligned}$
HY400	$\begin{aligned} & 240 \mathrm{~W} \\ & \text { into } 4 \Omega \end{aligned}$	0.01\%	100dB	$-45-0+45$	114×100×85	1.15 Kg	$\begin{aligned} & £ 27.68 \\ & +£ 4.15 \end{aligned}$

Load impedance - all models $4-16 \Omega$
Input sensitivity - all models 500 mV
Input sensitivity - all models
Inputimpedacee - all models $100 \mathrm{~K} \Omega$
Frequency respone
Frequency response - all models $10 \mathrm{~Hz}-45 \mathrm{KHz}-3 \mathrm{~dB}$

THE POWER SUPPLY UNITS

1.L.P. Power Supply Units are
designed specifically for use
with our power amplifiers and designed specifically for use
with our power amplifiers and
are in two basic forms - one are in two basic forms - on
with circuit panel mounted o conventionally styoled trans
former, the other with toroidal
transformer, having half the
transformer, having half th
weight and height of co
ventional laminated types. AID ORDERS DESPATCHED POST PAID
HOW TO ORDER, USING FREEPOST SYSTEM Simply fill in order coupon with payment or
credit card instructions. Post to address as below but do not stamp envelope we wey
postage on all letters sent to us by readers of
this

* ALL U.K. ORDERS DESPATCHED POST PAID

ELECTRONICS LTD.

 EREEPDST SERVICE

FREEPOST 5, Graham Bell
Canterbury, Kent CT2
俍
Canterbury. Kent CT2 7 FPP.
Telephone (0227) 54778 .

Please suppl

\qquad I enclose Cheque \square Postal Orders \square International Money Order \square Please debit my Account/Barclaycard Account No.

new books			Z80 BOOKS					
other Micro－buses		${ }_{\text {¢ }}{ }_{\text {¢ } 13.05} 5$	Z80 Programming for	${ }_{\text {Oilog }}^{\text {Osbu }}$	${ }_{8} 54.00$			
ftware development	Hun	${ }_{\text {£ } 3.95}$	Z80 P10 Te		£ 3.25			
Architecture of Small Computer Systems	Lippiatt	${ }_{ \pm} 4.50$	Z80 Programming		${ }^{\text {£ } 4.50}$			
Principles of Data Base Management	Martin	${ }^{1} 12.50$	Z80 Microcomputer Hanabook ：－${ }^{\text {a }}$	Berden	${ }_{\text {¢ }} 6.9 .95$			
Cobol for Beginners	Worth	－ $\begin{array}{r}\text { ¢ } \\ \text { f16．75 } \\ \text { fle }\end{array}$	Practical Microcomputer Programming $\mathrm{Z80}$ 780 Instruction Handbook	Weller Scelbi				
16－bit Microprocessor Archi		£ 6.95	${ }_{\text {Z }} 880$ Asssembly Language Programming		${ }_{ \pm} 6.95$			
			Introduction to TRS 80 Graphics．	Inman	${ }_{\text {d }} 5.75$			
Electr			Z8001／Z8002 Product		£ 3.75			
Handbook of Microprocessors			Z80 Instant Programs（book）for					
			Z80 Instant Programs（cassette）for Nascom Hopton					
Introduction to Microprocessors ．．．Levanth								
The VNR Concise EncyclopediaMathematics ．								
Active Filter Cookbook ．．．．．Lancaster $£ 10.45$			BASIC					
CMOS Cookbo	Lanc	£ 6.95	The Basic PrimerThe Basic Handbook ．．．．．．．WaiteLien		${ }_{\& 11.00}^{2}$			
IC OP AMP Cookbook								
IC Timer Cookbook ${ }_{\text {T．}}$	${ }_{\text {J }}^{\text {Jung }}$ Uastast		Applications Program \vdots \vdots Game Program					
TTL Cookbook		${ }_{\text {x } 6.95}$						
The Cheap Video Cookbook	Lancaster	4.30	Graphics Display \＆Misc．Program					
IC Converter Cookbook			All at $£ 6.65$ each．					
INTRODUCTORY BOOKS The Mighty Micromite © Computing A Dictionary of Microcomputing			Terms：OFFICIAL ORDERS（ $\mathrm{min} . £ 10.00$ ）．ACCESS \＆ BARCLAYCARD WELCOME． SEND FOR COMPLETE BOOK LIST．ALL PRICES İNGL̇UDE POSTAGE \＆PACKING					
	${ }_{\text {Z }}^{\text {Zaks }}$ Burton	，						
MAIL ORDER： 40 Bartholomew Street，Newbury，Berks．Tel： 063530505								
BIRMINGHAM：1st Floor	es，＇Tivol	Centre，	oad，Birmingham．					

OHio scientific	
\＃	
＊	
Sill	
	为
	隼
	amt 80 £6．08．Stereo $30 £ 21.57$ ．AL30A £4．08．
为	
	Post 30 p extra．Prices include VAT unless stated． Official and overseas orders welcome．Lists 24p

Faultuson reliability and well eatit．

 unshielded coils，shielded versions，variable coils for p．c．b．or chassis mounting，low－profile chips for thick film packages，toroids and a new range of power chokes．At Mercator we aim to see that our back－up service is ITT Mercator，South Denes， Great Yarmouth，Norfolk，NR30 3PX Tel：（0493）4911．Telex： 97421

The NEW Marshall's 79/80 calalogue is just full of components

and that's not all. . .

$\ldots 0$ our new catalogue is bigger and better than ever Within its components and accessories available from Marshall's.
These include Audio Amps, Connectors, Boxes, Cases, Bridge
Rectifiers, Cables. Capacitors, Crystals, Diacs, Diodes, Displays, Heatsinks, I. Cs, Knobs, LEDs, Multimeters, Plugs. Equipment, Thyristors, Transistors, Transformers, Voltage Regulators, etc., etc.
Plus details of the NEW Marshall's 'budget' Credit Card. We are the first UK component retailer to offer our customers our
own credit own credit card facility
Plus - Twin postage paid order forms to faciltate speedy
Plus - Many new products and data.
Plus 100 s of prices cut on our popular hnes including I.Cs Transistors, Resistors and many more.
If you need components you need the new Marshall's Catalogue
Available by post 65 p post paid from Marshall's, Kingsgate from any branch to callers 50 p.

Retail Sales: London: 40 Crickikewood Broadway, NW2 3ET. Tel: $01-4520161 / 2$. Also 325 Edgware Road, W2. Tel: $01-7234242$. Glasgow: 85 West

The $7208 \mathbf{6 0 0}$ MHz Mini Counter

the quality low cost counter

features

- All Metal Cabinet @ 8 Digit . 4"' LED Display Built-in Prescaler Automatic Dp Placement Gate Light IC Sockets Included 240 V
or 12 V Operation Q Proportional Control Crystal Oven (Optional)
Built-in VFF-UHF
available from the excluside
SOTA COMMUNICATION SYSTEMS LTD.
26 CHILDWALL LANE, BOWRING PARK, LIVERPOOL L14 6 TX
MERSEYSIDE. TEL. $051-4805770$ Telex 62710 SOTA

DESCRIPTION
The Davis 7208 VHF.UHF Frequency Counter incorporates the latest LSS1
fechnologin wide arge portable instrument at a reasonable price. The 7208
efters oustandind fean

ROHDE \& SCHWARZ TV.Demodulator. AMF. $55-90 \mathrm{MHz}$ Selective UHF V/Meter. Bands 4 \& 5 . USV S450. UHF Sig. Gen type SDR $0.3-1 \mathrm{GHz} . £ 750$. UHF Signal Generator SCH. £175. XUD Decade Synthesizer \& Exciter Videoskop SWOF with sideband adapter Modulator/Demodulator BN1 $7950 / 2$ Video Test Signal Generator type SPF UHF Sig. Gen. type SCR. $1-1.9 \mathrm{GHz}$.	P. F. RALFE ELECTRONICS 10 CHAPEL STREET, LONDON, NW1 TEL: 01-723 8753	DC POWER SUPPLIES *APT 10459/8. 12-14V. @ 5 Amps. £25. (£2 p.p.) \star APT $10459 / 8 . ~ 24 V . ~ @ ~$ 5 Amps. £25. (£2 p.p.) \star We can supply the above power supply at any fixed voltage between 5 V and 36 V at 5 A . $\mathbf{£ 2 5}$. \star Mullard Dual supplies. Brand new with hand- book. Pos $\&$ Neg 12 V , at 1 A and 0.4 A respectively. Dimensions $9 \times 4 \times 5$ ins. $£ 10.00$
MARCONI		
TF1010 AC oscillatio	AIRMEC Display oscilloscope 4 beam AIRMEC 314 A Voltmeter. 300 mV (FSD)-300V. LEVELL TG66A-1 Decade oscillator DERRITRON 1 KW Power Amplifier with control equipment for vibration testing etc SOLARTRON CD1 740 Dual-Beam Oscilloscope. $£ 475$ $\mathrm{EBFO}^{2} 5 \mathrm{O}$. £350. HEWLETT PACKARD 302A Wave Analyser. HEWLETT PACKARD 695A Sweep Oscillator $£ 350$. BOONTON BOONTON 202H AM /FM Signal Generator	P.p.). \star ARNELL Current limited. Dimensions $7 \times 5 \times$ ins. Following types available. 5 Volts @3A. $£ 15.13 .17$ Volts @ $2 \mathrm{AA} . £ 15.27 .32$ Volts $@ 1 \mathrm{~A} £ 15$. Plus $£ 1.50$ each postage. All the above power supply units are 230 V . AC input and are stabilised and regulated andfused. All are fully tested before despatch and guaranteed in first-class order throughout. As with all our equipment there is a money-back guarantee if not completely satisfied.
A/1. Power		
BECKMAN TURNS COUNTER DIALS Miniature type (22 mm diam.). Counting up to 15 turn "Helipots." Brand new with mountinginstructions. Only $£ 2.50$ each.		
	SE Labs Dual-Beam oscilloscope type EM102 c/w EM515 plug-in unit. DC-15MHz. Mains or 12 V Battery operated Solid-state. $8 \times 14 \times 18$ ins. $\mathbf{£ 2 5 0}+\mathbf{V A T}$.	
KAY ELEMETRICS SONA-GRAPH Sona-Graph model 7029A. $5-16000 \mathrm{~Hz}$ Spec Analyser with type 6076C Plug-in unit. For the spectrogrphic Analysis of transient sounds such as speec, voice, doppler shifts, explosionsetc. Supplied in excellent condition with handbooks.	SOLARTRON LM 1420.2. DVM 6 ranges to 1 KV , MUIRHEAD type K-134-A Wave Analyser. Portable. RADIOMETER AFM/1. Dev/Mod Meter. 3.5-320MHz. £185.	
	BRUEL \& KJOER type 1504 Deviation Bridge BRUEL \& KJOER Vibration equipment 1018BRUEL \& KJOER Frequency analyser 2105 BRUEL \& KJOER Microphone amplifier $2603 £ 195$.	'CENTAUR' INSTRUMENT COOLING FANS
ADVANCE CONSTANT VOLTAGE TRANSFORMERS 220 Volts 250 W . 25 . 220 Volts. 250 W . $£ 25$. ($£ 2$ carriage)		
	BRUEL \& KJOER Microphone amplifier $2603 £ 195$. BRUEL \& KJOER Type 3301 Automatic frequency response	Made by Rotron Holland. These are very high quality, quiet running fans, specially designed
	recorder 200 Hz . $£ 750$ S 489 EM Wave Analyser TEKTRONIX 555 scope with plug-ins types CA (2 off), 21, 22 TEKTRONIX 5154	for the cooling of all types of electronic equipMeasures $4.5 \times 4.5 \times 1.5$ in Airflow $90 \mathrm{cu} / \mathrm{ft} / \mathrm{minute}$. These are ex
	TEKTRONIX 515A Oscilloscope TEKTRONIX 545 main frames. $£ 210$. Choice of plug-in units	fully tested fuly tested before despatch. Prices as follows:$115 \mathrm{~V} . \mathrm{AC}: \mathbf{£ 4 . 5 0} .230 \mathrm{~V} . \mathrm{AV}$: $: \mathbf{£ 5 . 0 0}$. Sma type fans as above but measures $8 \times 8 \times 3.8 \mathrm{cms}$.
		type fans as above but measures $8 \times 0 \times 3.8 \mathrm{cms}$. any of the above fans is 35 p ea. Finger guards any of the above tans is $35 p$ ea. 50 inger guardsavailable for the larger type at0p each. (RS price for these fans is $£ 12.50$ each!!),

Eddystone Radio Limited cordially invite you to visit us at
 COMMUNICATIONS 80

National Exhibition Centre, Birmingham, April 16th/18th1980
to view communications and noise measuring equipment on display covering the spectrum 10 kHz to 1000 MHz

A new series of AM/FM and general purpose models, the 1570 and 1590, designed for the radio enthusiast, will be introduced

A range of our well known boxes will also be on display.
Please write for details of our comprehensive range.

Eddystone Radio Limited

Member of Marconi Communication Systems Limited
Alvechurch Road Birmingham B31 3PP England
Telephone: $021-4752231$ Telex: 337
A GEC-Marconi Electronics Company

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{VBz NewBear Components} \& \multicolumn{3}{|l|}{mponents} \\
\hline \multicolumn{4}{|l|}{ S-100 bus (Ithaca Intersystems)} \& \multicolumn{3}{|l|}{\begin{tabular}{l}
SOFTWARE \\
\(\overline{\text { IS-107 Pascal/Z }}\) - CP/M Version . . . \(£ 165.00\)
\end{tabular}} \\
\hline \& \& Assembled
\(\&\) Tested \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
 \\
DISC CONTROLLER AND 6809 BOARDS
\end{tabular}}} \\
\hline IA1160 \& Front Panel \& \({ }_{ \pm 225.00}^{2}\) \& \({ }^{\text {Bare }}\) \& \& \& \\
\hline IA1010 \& \& \({ }_{\substack{\text { ¢105.00 } \\ \text { ¢123.00 }}}\) \& \({ }_{\text {¢221.00 }} \times 21.00\) \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{NOW AVAILABLE FOR 77-68. SEND FOR DETAILS OF THIS LOW COST}} \\
\hline IAl100 \& Video \(50 / 60 \mathrm{~Hz}\) \& \(\pm 99.00\) \& \({ }_{815.00}\) \& \& \& \\
\hline IA1050 \& 2708/2716 EPROM. \& £ 57.00 \& 815.00 \& \multicolumn{3}{|l|}{RANGE OF KITS.} \\
\hline IA1110
IAl110

ald \& 8K Static RAM 250nS \& £117.00
$£ 99.00$ \& ${ }_{815.00}^{815.00}$ \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{SPECTRONICS UV Eprom-Erasing Lamp}}

\hline IA1030 \& Prototype \& \& \&15.00 \& \& \&

\hline IA2010 \& 16 K Static RAM 250 nS \& £295.00 \& N/A \& \multicolumn{3}{|l|}{}

\hline IA2010 \& ${ }_{\text {S }} 16 \mathrm{~K}$ Static RAM 450 nS \& - 8275.00 \& N/A \& \multicolumn{3}{|l|}{PE14T* Erases up to 6 chips. Takes approx. ${ }_{\text {d }} 196$.}

\hline IA1120 \& Singe Board Computer. \& +8895.00 \& N/A \& \multirow[t]{2}{*}{PE24T*} \& \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Erases up to 9 chips. Takes approx.
15 mins.}}

\hline IA1190 \& \& ${ }^{2180.00}$ \& N/A \& \& \&

\hline IA2030 \& 64Y. Dynamic RAM 250ns

A/D, $\mathrm{D} / \mathrm{A}-8$ Channel, 8 -bit \& $$
\begin{aligned}
& \text { £615.00 } \\
& \text { £295.00 }
\end{aligned}
$$ \& N/A \& PR125* \& \multicolumn{2}{|l|}{${ }_{\text {Erases up }}^{7 \text { mins. to }}$ ¢ chips. Takes approx.}

\hline All boards \& me with manuals. \& \& \& \multicolumn{3}{|l|}{PR320T* Erases up to 36 chips. Takes approx. $£ 384.0$}

\hline DPS-I F \& ont Panel S-100 mainframe \& from \& 95.00 \& \multicolumn{3}{|l|}{PC1000* Erases up to 72 chips. Takes approx. £842.83}

\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{$\xrightarrow{\text { Cromenco TUART I/O board . }}$ Motherboards (George Morrow) 1800.00}} \& \multicolumn{3}{|l|}{${ }^{*}$ Includes a 60 mins. Timer.}

\hline \& \& \& \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{TERMS: Official Orders (minimum £10.00): Barclaycard \& Access Welcome. Please add 15% V.A.T.}}

\hline 12 slot \& 隹 \& \& \& \& \&

\hline 20 slot \& ctive terminations \& \& ${ }_{ \pm} 45.00$ \& \multicolumn{3}{|l|}{SEND FOR OUR BOOK LIST AND COMPONENTS catalogue.}

\hline Micromat \& floppy disc controller board \& \& £280.00 \& \multicolumn{3}{|l|}{a division of Newbear Computing Store Ltd.}

\hline
\end{tabular}

CALLERS AND MAIL ORDER: 40 Bartholomew Street, Newbury, Berks. Tel: 063530505 CALLERS ONLY: 220-222 Stockport Road, Cheadle Heath, Stockport. Tel: 0614912290

A new generation of cases .. .

The latest additions to the Bocon range of instrument cases are a masterpiece of modern tooling. The Bocon Desk series is made in black a.b.s. in
four sizes. These beautiful mouldings combine highly four sizes. These beautiful mouldings combine highly
polished surfaces with flat, textured areas on the top. polished surfaces with flat, textured areas on the top.
The front panel is natural anodised aluminium, angled to provide three separate surfaces.
The Bocon Commander is a large keyboard and display enclosure made in black toam plastic. The keyboards. The front and rear panels are satin anodised aluminium. There is a second smaller
Commander constructed as two clip-together halves in black a.b.s. again with anodised panels.
For further information on these superb cases please write, telephone or circle the enquiry card.

THE BIGGEST SELECTION OF CASES IN EUROPE

А W=ST HYロ=
 USA
 WEST HYDE Developments lumited. unit g, park street industralal estate. Aylesbury, bucks. tel o296 2041

Value Added Tax not included in prices

 U.K. ORDERS. Subiect to 15% surchargge oritart': NO charge is made for SECURICOR DELIVERY: For this optional seviice (U.K. mainland only

UK Carriage free
POWERTRAN COMPUTERS
(a division of POWERTRAN ELECTRONICS)
PORTWAY INDUSTRIAL ESTATE
ANDOVER HANTS SP10 3NN

ANDOVER

PSI Comp 80 Z80. Based powerful scientific computer. Design as published in Wireless World, April-September, 1979

The kit for this oustandingly practical design by John Adams being published in a series of aricices in Wireless World really is complote

PSI COMP 80 Memory Expansion System	
	all inside the computers own cabinet! ouvergineoting a mother board with buffers and its
Mother Board:	Fibre, glass double sided plated through hole P. .. .
RAM boerd	
Romboard	

POWEFTRAM

PSI COMP 80 Memory Expansion System

Mother Board:
$\underset{\text { RAM Sorat }}{\text { 8K }}$

Z \& I AERO SERVICES Head Office: 45a WESTBOURNE GROVE, LOND Tel. 7275641 Telex 261306	RETAIL Shop 85 TOTTENHAM COURT ROAD, W. 1 Tel. 580-8403
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS	
	TYPE U4324 PRICE complete with test leads and fibreboard storage case $£ 9.50$ Packing and postage $£ 1.20$
TYPE U4323 COMBINED WITH SPOT FREQUENCY OSCILLATOR PRICE, in carrying case, complete with leads and manual £8.00 Packing and postage $£ 1.00$	PRICE, complete with steel carrying case, test lead, battery and instruction manual $£ 9.50$ Packing and Postage $£ 1.50$
THIS OFFĖR IS VALID ONLY FOR ORDERS ACCOMṖANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL	OUR 1980 CATALOGUE/PRICE LIST OF VALVES, SEMICONDUCTORS AND PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. for $£ 0.60$ FOR YOUR COPY

SEMICONDUCTORS Send your orders
DEPT. WW4, PO Box 6, WARE, HERTS. DEPT. WW4, PO Box 6, WARE, HERTS.
Visit our Shop at: 3 Baldock Street, Ware, Herts. TELEX: $\mathbf{0 9 1 7 8 6 1} 3182$

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

PCB's \& CONTACTS CLEANED WITHOUT WATER OR POWDER USING FYBRGLASS BRUSHES
 RUSH

ERASER INTERNATIONAL LTD.

WW-G89 For further detans

WIRELESS WORLD, APRIL 1980
T20 + 20 and T30 + 30 20W, 30W AMPLIFIERS

INCREASED CAPACITY AT OUR BIG NEW FACTORY

WE'VE MOVED! NEW FACTORY UPI PRICES DOWN!

MEANS MANY PRICES DOWN! ALL OTHER FROZEN
TRANSCENDENT DPX
As featured in Electronics Today International August, September
As eatured in Electron
October, 1979 issues
DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER

EXPORT A SPECIALITY!

Value Added Tax not included in prices UK Carriage FREE

 NEW FACTORY ON SAME INDUSTRIAL ESTATE
ADDRESS AND PHONE NUMBER UNCHANGED our catalogue is FREE! write or phone NOW!
POWERTRAN ELECTRONICS

SPECIAL PRICES FOR COMPLETE KITS
t20+20 KIt price $£ 33.10$ + VAT T30+30 KIT PRICE $£ \mathbf{3 8 . 4 0}+$ VAT VVallable as separate packs - prices in our free catalogut POWERTRAN SFMT TUNER

PRICE FOR COMPLETE KIT $£ \mathbf{3 5 . 9 0}$ + VAT AVALLABLE AS COMPLETE KIT ONLY

WIRELESS WORLD, APRIL 1980

WW-037 FOR FURTHER DETAILS

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH, England

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability and
keener pricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a XY facility using CMOS ICS for extra reliability, Z modulation for brightening or dimming the trace, 10 MHz scan at full field trigger. At $£ 210.00^{*}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MH bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of
any signal. Trigger level and slope are selected on one dual function control. 3\% accuracy and still only £360.00**

Plus the 4 S 6 single beam 6 MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebas range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and very good price. £144.00*

Return the coupon for full details of the range that gives you a lot more scope.

COPEX

Scopex Sales,
 Pixmore Avenue, Letchworth, Herts SG6 1JJ.

 Tel: (04626) 72771 .I Please send me full details of the Scopex range.

PLEASE ADD $\mathbf{1 5 \%}$ TO ALL ORDERS INC. CARR. CURRENT RANGE OF NEW L.T. TRANSFOR			
	PULSE TRANSFORMERS "C" core construction. Aeris design, code number 1579 . Ratio 1.1 .5 Kv . $\mathbf{8 4 . 5 0} \mathrm{pp}$		
	WODEN 440v SP TRANSFORMERS 15 amps potted type $£ 4.50$ 380-400-440v open $40 \mathrm{VA} £ 3.50 \mathrm{pp} £ 1.50$		
	RIPLEY TRANSFORMERSPRI $115-230 v$ give $24-0-24 \mathrm{v}, 24 \mathrm{v} 10 \mathrm{a} 48 \mathrm{amps} 5 \mathrm{a}$. Open frame type. Designed for drop-thru mounting,Easily ydapted for normal mounting. $\mathbf{£ 8 . 5 0}$PP£1.50.		
HEAVY DUTY OP TRANSFORMERS Type OT 28EL 100 watts. $3.75 \Omega, 7.5 \Omega, 15 \Omega, 1.75 \mathrm{~K}$ CT, 4 EL34 			
WER LT TRANSFORMERS	HT SMOOTHIPG CHOKESParmeke potted types 4.5H 2BOM/A £3.00 $\mathrm{pp} £ 1.50 \mathrm{H} 25 \mathrm{M} / \mathrm{A} £ 1.50 \mathrm{pp} 75 \mathrm{p} .100 \mathrm{H}$$75 \mathrm{M} / \mathrm{A} £ 1.50 \mathrm{pp} 75 \mathrm{p} .15 \mathrm{H} 50 \mathrm{M} / \mathrm{A} £ 1.50$ porn pp $£ 1.50$. Swinging type 34 H 80M/A- 70 H 130H $24 \mathrm{M} / \mathrm{A}$ res 2350 OHM$75 \mathrm{H} .5 \mathrm{H} / \mathrm{M}$ \& $3.50 \mathrm{pp} £$		

TURNOVER PCB
ASSEMELY HOLDERS

sonimagi8
 XVIII INTERNATIONAL IMAGE, SOUND AND EIECCTRONICS SHOW

4 LARGE EXHIBITION PALACES DEALING WITH

 Telex 50458 FOIMB-E

SERVICE TRADING CO

fig NEON FLASH TUBE High intensity

 WHY PAY MORE?

 MERCURY SWITCH

230 VOLT AC FAN ASSEMBLY
Powerfui continuously raied AC motor

 21.WA WELECTOR SWITCH Wi

 A.E.G: contactor

ARROW-HART MAINS CONTACTOR

$\underset{\text { Type }}{\mathbf{S N F P G} .1706 . \text { Smal }}$

 24V OC BLOWEÉ UNIT

 MINIATURE UNISELECTOR
12v 12 Way
and

 $\underset{\text { MEA. }}{\text { Mig. by D Duty }}$
 \% Ning

VARIABLE VOLTAGE TRANSFORMERS
INPUT $230 / 240 \mathrm{~V}$ a.c. $50 / 60$ OUTPUT

 sor send SAE for leatil

STROBE! STROBE! STROBE!

* HY-LLGHT STROBE KIT Mk. IV

57.50 +75 P PRP (E9.49

METERS (Now) - 90mm DIAMETER

geared motors GEARED MOTORS:.

24V D.C. Reversible Motor
 Wow hhooctun 1 omm speed contro aviable 55.90 .16 .79 inc

 ,

 COMPRESSOR

 REDUCTION DRIVE GEARBOX
 AC WKg TUBULAR CAPACITORS
 'VENNER TYPE' ERD TIME SWITCH 200/250V Ac 30amp 2 on $/ 2$ oft every 24 hrs
any manuall presest time. 36 -hour sprin O

SANGAMO WESTON TIME SWITCH
 MINIATURE PROGRAMMER

All Mail Orders - Callers
Ample parking
Ample parking
Showroom open Monday-Friday

ELECTRO-TECH COMPONENTS LTD.

 364 EDGWARE ROAD, LONDON, W.2. TEL: 01-723 5667
JVC-VICTOR HIGH FIDELITY STEREO CASSETTE

TRANSPORT MECHANISM
ELECTRO-TECC COMPONENTS have secured a very large quantity of cassette transport mechanisms, equipped with all the latest improvements, as well as
ESEN-ALLOY' type 1.5 micron record/replay heads, and soienoid-controled autostop action. These were manutactured by JVC/VICTOR of Japan to the high "SEN-ALOO"" type 1.5 micron record/fr.
Specification of TANDERG OF NORWAY.

Regili readers of WiREELESS WORLD will know of the original LINSLLYY-HOOD CASSETTTE DECK design, published in May 1976 . Subsequent articles by Mr.
Linsley-Hood have confirmed that the desiln far exceedeod his original expectations, so much so that he pubished a number of improvements, modifications, and
\star CASSETTE DECK KIT BASED ON DESIGN OF MR. LINSLEY-HOOD \downarrow
We have developed an outstanding stereo cassette k kit with the aid of Mr. Linsley-Hood, to complement the improved specification and lates
cassette electronics since the original design was published. The kitit is ideal for use in conjunction with the UVC transport mechanism (above). Included in the kita re two fibreglass PCB's, drilled and plated for immediate assembly, two vU meters, Dual LLD Peak Meters
10 microc-circuit 1 C's for the the most up-to-date pertormance, as well as monitoring amplifier, test and calibration cassette, etc.

Price of Kit (without transport mech.) $£ 35.95$ VAT inc. plus $£ 1.00$ P\&P
Also available: A custom-designed case for the Kit, this is a fully screened enclosure, sloping panel, satin anodised, wood end panels, professional finish. Price of Case $£ 9.75$ VAT inc. plus $£ 1.00$ P\&P.

Remote control is seeing red. Infra red with Ferranti BPW 41. (100

BPW41 is the new infra red detection response photodiode, from Ferranti. The important news is that we've built in a narrow band infra red transmissive filter that eliminates the need for separate filters and gives a very selective spectral response. Take a look at the curve, you'll see it peaking at 925 nm .

BPW41 offers a narrow spectral band width combined with broad
directional response, low junction capacitance for fast response, voltage variable response times, a $7.5 \mathrm{~mm}^{2}$ active area for increased sensitivity and virtual immunity to extraneous visible radiation.

With the kind of improved performance BPW 41 gives you, you could do more with your remote control system. Whatever you're into -
cordless telephones, TV channel selectors, toys remote keyboards for VDU's, security or alarm systems - BPW 41 could solve a lot of your problems.

Pick up the phone (cordless or not) and ring 061-624 0515 or write to Opto-electronic Marketing, Ferranti Electronics Limited, Fields New Road, Chadderton Oldham OL9 8NP.
FERRANTI Semiconductors

CHILTMEAD LTD

NORWOOD ROAD, READING. TEL: READING 669656
DESIGN/PRODUCTION
Suffer no more - contact the experts by dropping a
line to:
CODESPEED ELECTRONICS
P.O. Box 23, 34 Seafield Road
Copnor, Portsmouth, Hants PO3 5BJ
We design and assemble equipment ranging from
PCBs to complete systems. Long or short production
runs, competitive prices with good delivery dates.
'IDEAS INTO REALITY'

WW-089 FOR FURTHER DETAILS

WW - 091 FOR FURTHER DETAILS

wW-021 FOR FURTHER DETALS

You will not be too late

JAN./FEB. issue, because the in the newsietrer reprinted below, even thougn it is our JAN./FEB. issue, because the part of the newsietrer with the items in short supply is not
reprinted. However, you will receive the whole of our MARCH/APRIL newsletter if you send us an order this month nend as an extra inducement we will send you our MAY/JUNE
newsletter directly it is printed, which is usually about two months before it can appear in newsletter dire.
this magazine.

是

 and

MINI-MULTI TESSTER

LINSLEY HOOD CASSETTE RECORDER 2

LINSLEY HOOD CASSETTE RECORDER 1

nenk kit comparate with buill-up units of much higher cost than the modes
VAT we ask for the complete kit

We have now comperet our redesign of $\mathbf{3 0}$ WATT AMPLIFIER

CASSETTE HEADS

All pricos plus vat
Please send
ALL UK ORERER ARE POST FREE
SAE for Iists giving fuller details and Personal callers sare almysy welcome
but please note we are closedal all day saturda
Instant easy ordering, tele phone your requirements and credit card number to us on Oswestry (0691) 2894

MODULAR ONE SERIES VDUS

ASRB3 and KSR33 TELETYPES

DEC EOUIPMENT

PDP11/04 9-slot $5{ }^{1 / 4}{ }^{\prime \prime}$ Processor with 16 kW MOS and DL1 W Interface, BRAND
NEW SURPLUS PDP $11 / 1051 / 4$ "Processor with 8 kW Core
and Asynchronous Interface $\quad \mathbf{£ 1 8 5 0 . 0 0}$ PDP8E Series Modules - large stocks of option modules, add-on core, CPU boards,
etc. all at reduced prices.
LA305 80-column DEC writer KSR ter-
minal LA36 132-column DEC writer KSR terminal LA11-PD Matrix Printer complete with MM11DP 16 kW Parity Core - BRAND NEW SURPLUS £995.00 PR11 High Speed Paper Tape Reader
complete with Unibus Controller $\mathbf{£ 1 2 9 5 . 0 0}$ RK11D Disk Controller with RKO5J and £6250.00 VT52-AF DEC Scope $£ \mathbf{7 5 0 . 0 0}$

DEC PDP 11 /40 CPU

SHUVART FLOPPY DISC DRIVES

NEW ASCII
KEYBOARDS - NEW LOW PRICES

KB756 56-station ASCII Keyboard mounted on
 KB710 10-key numeric pad. supplied with
cos.
connecting cable

 KB771 71 stataion AScIi Keybarard including
numeric /cursor control cluster, mounted in steel
 DB25S Mating connector for KB771
E4. 25
PERK 5 S.station ASCil Keyboard for PET. Com-
 Discounts available for quantities
 TERMINAL

hazeltine
THERMAL PRINTER

PRINTERS \& TERMINALS

'BALL MIRATEL 9" Monitor with case $£ \mathbf{£ 9 5 . 0 0}$
 GE TERMINET 1200 impact Printer
 HAZELTINE H-2000 VD from $£ 395.00$
SCOPE DATA Electrosensitive Printer TALLY 1602 Bidirectional Matrix Printer TEKTRONiX $4010-1$ Graphics Terminal $£ 1500.00$ TEKTRONIX 4601 Hard Copy Unit \quad E1400.00

MISCELLANEOUS

AMPEX 1 " $\times 3000$ ' Video Tape $\$ 15.00$
 DATA GENERAL NOVA $12104 K$ © $\mathbf{E 9 5 0 . 0 0}$ DATA GENERAL NOVA 1210 4K CPU DIGITRONICS P 135 Paper Tape Punches

Electronic No. 1 in Second User

A.C. VOLTMETERS FLUKE
AC/DC AC / DC Differential Voltmete
HEWLETT PACKARD True R.M.S. Voltmeter 3400A
MARCONI INSTRUMENTS Valve Voltmeter TF 2600
Valve Voltmeter TF 2604 Valve Voltmeter TF 2604
R.F. Millivoltmeter TF 2603
ANALYSERS
BIOMATION BIOMATION
Logic Analyser 16500
GENERAL RADIO Vibration Analyser 1911A
HEWLETT PACKARD Spectrum Analyser $141 \top$
c/w 8552 A \& 8554 L Logic Analyser 1600A
Wave Analyser 310 A Wave Analyser 310A
Network Analyser System 8407A MARCONIINSTRUMENTS Wave Analyser
SOLATRON Frequency Re

BRIDGES
GENERAL RADIO
Immitance Bridge
1607 LCR Bridge (0.05%) 1608 A
MARCONST INSTRUMENTS MARCONI INSTRUMENT
Universal Bridge TF 1313 Universal Bridge TF 1313
Universal Bridge TF 1313 A
In Situ Bridge TF 2701
O meter TF 1245A, c/w TF 12
WAYNE KERR
Universal Bridge B 642
V.H.F. Admittance Bridge B 801B Source and Detector SR 268
A. Testamatic A 60 A.C. Testamatic-A 60 (0.1%)
Universal Bridge B221
D.V.M.'S AND D.M.M.'S
$51 / 2$ digit D.V.M. 1051
FLUKE
$31 / 2$ digit D.M.M. 8022 A (New)
$31 / 2$ digit D.M.M. 8020 A
$41 / 2$ digit D.M.M. 8600 A 41/2 digit D.M.M. 8600 A
$5^{1 / 2}$ digit D.M.M. 8800 A 51/2 digit D.M.M. 8800 A- 01 $51 / 2$ digit D.M.M. 3490 A $51 / 2$ digit
PHILIPS
Autoranging D.M.M. PM 2514
$31 / 2$ digit D.M.M. PM 4) digit D.M.M. PM 2524
Autoranging D. 24. PM

49/53 Pancras Road London NW12QB Tel:01-837 7781. Telex 298694
Unless otherwise stated all equipment offered in the Electronic Brokers advertisement is refurbished and in the case of Test
Equipment also calibrated. Test equipment is guaranteed for 12 months computer peripherals for 3 months.

TEKTRONIX
Storage Scope 434 Dual Trace. 25 MHz $£ 1600$

HEWLETT PACKARD

Network Analyser System
$8407 \mathrm{~A} / 8412 \mathrm{~A}$. $110 \mathrm{MHz} \mathbf{£ 3 5 0 0}$
OSCILLOSCOPES
HEWLETT PACKARD
75 MHz Dual Trace 1707 B MARCON Dual Trace 1707B X-Y Display TF $2213 / 1 \mathrm{c} / \mathrm{w}$ Memory Unit
TK 2214 c PHILIPS
15 MHz Dual Trace PM $3211 \quad \mathbf{E 4 5 0}$
25 MHz Dual Trace PM

25 MHz Dual Trace PM 3212	
120 MHz Dual Trace PM 3260	$\begin{array}{r}\mathbf{£ 6 2 5} \\ \mathbf{£ 1 0 9 5}\end{array}$
10	

 $\begin{array}{ll}\text { 100MHz Dual Trace PM } 3262 & \mathbf{£ 1 2 5 0} \\ \text { £1300 }\end{array}$ TEKTRONIX
$\begin{array}{rl}25 \mathrm{MHz} \text { Storage Scope } 434 & \mathbf{£ 7 6 5}\end{array}$
 $\begin{array}{ll}35 \mathrm{MHz} \text { Dual Trace T932 } & \mathbf{£ 5 5 0} \\ 1 \mathrm{MHz} \text { Miniscope/D.M.M. } 213 & \mathbf{£ 9 5 0}\end{array}$ RECORDERS RECORDERS BRUSH
8 Channel

Multipoint Recorder 816 £695

WIRELESS WORLD. APRIL 1980

BIOMATION 1650D
16 Channel Logic Analy
$£ 3900$

MARCONI INSTRUMENTS
P.C.M. Regenerator

Test Set OA 2805A £3500
PHILIPS
Single Channel Recorder PM $8110 \quad £ 225$ RACA
F. M. R HANDON SOUTHERN 42600 6 Channel U/V Recorder 10-650 £725 WATANABE 6 Channel Chart Recorder MC 641 £2250
YOKOGAWA Chart Recorder 3047

SIGNAL SOURCE

HEWLETT PACKARD
2034 A
Oscillator $10 \mathrm{~Hz}-10 \mathrm{MHz} 651 \mathrm{~B}$ ecade Oscillator 4204A U.H.F. Signal Generator 612A MARCONI INSTRUMENTS R.C. Oscillator TF 1370A . F. Oscillator TF 2000

WW - 094 FOR FURTHER DETAILS
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVIGE

BAMBER ELECTRONICS

TRANSFORMERS

The VERSATOWER range of telescopic and tilt-over towers cover
range of 25 ft to 120 ft (7.5 M to 36 M).

Designed for Wind Speeds from 85 mph to 117 mph conforming with C.
functional design, rugged construcion and total versatility make it first

Trailer mounted or static, the VETRSATOWER solves those difficult and ground lantenna support, access

A programme of continuous product development has led to a range of highly competitive prices. This coupled with our quality assurance scheme ensures that we maintain position we enjoy today

SEE US ON STAND $3 L 40$ AT COMMUNICATIONS '80

VERSATOWER
THE PROFESSIONALS' CHOICE

Barrie Electronics Ltd.
3,THE MINORIES,LONDON EC3N 13J TELEPHONE: 01-488 3316/8 STEME HALF PRICE!

WALLINGTON, SURREY SMG 8 RGG Phone: 01-669 6700

Appointments

Advertisements accepted up to 12 noon Monday, ubject to space being available.

DISPLAYED APPOINTMENTS VACANT: $£ 10.00$ per single col. centimetre (min .3 cm) LINE advertisements (run on): $£ 1.50$ per line, minimum three lines. BOX NUMBERS: 70 p extra. (Replies should be addressed to the Box Number in the advertisement. c/o Wireless World, Dorset House, Stamford Street, London SE1 9LU. PHONE: Mike Thraves 01-261 850

DESIGN \& DEVELOPMENT ENGINEERS

Are you sceking an opportunity to work on
sophisticated test gear employing the latest sophisticated test gear emplo
analogue and digital techniques?

If so, join Rediffusion and work on a number of exciting projects associated with the design and testing of our future colour TV production

Effective testing plays an important part ensuring that the finished product reaches the high quality levels necessary for success during
the 1980's. To increase the scope and flexibility of our testing, new equipment will be limited knowledge of digital techniques this opportunity will enable you to learn the mysteries of microprocessors and their application to testing complex electronic sub-assemblies
Applications are invited from engineers with a creative ability to work in a congenial and stimu
lating environment at our Engineering Centre at Chessington, Surrey. We have vacancies at senior
and intermediate levels offering opportunities for career advancement. Salaries are obviously commensurate with qualifications and experience, but will be extremely attractive to those engineers whose test equipment background is such that they an make a significant contrib -

The usual big company benefils, such as pension scheme, free life insurance, 4 weeks holiday with ance with reave period, sports facilities and assist posts.

If you are interested in these challenging positions and would ike more deails or wish to discuss the

Mr. H. Brearley,

Head of Technical Services,
Rediffusion Consumer Electronics Ltd.,
Chessington, Surrey
hessington, Surrey. KT9 1 HJ.

Radio Communications Electronics Engineers and Software Designers

Mid-Sussex-S.W. London
Salaries up to $\mathbf{£ 8 , 0 0 0}$ To join our expanding R\&D Laboratories covering a wide range of R.F.
spectrum, from L.F. to V.H.F. Equipments include transmitters and spectrum, from L.F. to V.H.F. Equipments include transmitters and eceivers for marine- and land-based use, radio
monitoring remote computer-controiled systems.
Electronics Engineers should have experience in transmitter or receiver design, analogue or digitial circuit design, microprocessor applications. Sottware Designers should be experienced Programmers with an
interest in control, signal processsing or navigational software. Atrractive salaries are complemented by excellent prospects and Contact: David Bird, Redifon Telecommunications Limited, 7281 (reverse charges).

ELECTRONICS RESEARCH AT THE
 UNIVERSITY OF ESSEX

 Graduates who have eor final year students who expect to obtain) afirst or upper second class honours degree are invited o apply for irst or usper second class honours degree are invited to apply fo
research leading to a higher degree (M.Sc., M. Phil. or Ph.D.). in the
ofllowing areas: ollowing areas
Audio' (high quality audio systems, music synthesis), Circuit ges, man-computer inter Acoustic Noise Cancellation, Satellite Communications Systems, Microwave and Millimetre Wave Propagation,
Speech Communication with Cons tions Transmission (data with Computers, relecommussion, filters, PCM. DPCM),
Telecommunicat Telecommunications swith ching Systems and Sof tware
computer control, traftic studies, network configurations) Visual Displays and Television Engineering (computer graphics, 3-D and colour TV). Picture Coding
Further information and application form available from Professor K. W. Cattermole, Deapartment of Electrtical En-
gineering Science (ref. JAN/3), University of Essex, Wiven-

GOVERNMENT OF DUBAI

DUBAI RADIO \& COLOUR TELEVISION TELEVISION ENGINEERING DEPARTMENT
Applications are invited from suitably qualified Engineers with several years proven experience in the field
of Television Engineering to fill future vacancies in the Engineering Division of Dubai Radio \& Colour
T This yound and expanding broadcasting service has been equipped with the most modern, soph isticated
and up-t-otate broadcast equipments. and candidates will be expected to be familiar with all aspects o
modern analogue and dig

STUDIO ENGINEERS (Two)

complex. Candidates should inerer for the maintenance of all equipments within the Television Studio extensively throughout the Studios. All Studios are equipped with EMI 2005 Cameras and Richms, LSed Laboratories Mixer Desks. LDK 14 Cameras are used for electronic news gathering.

TRANSMITTER ENGINEERS (Two)

To be responsible to the Chief Engineer for the maintenance of VHF and UHF medium and high power
transmitters and ancillary equipments. Candidates should be familiar with routine testing procedures ensure the continual good equipmentis. Candidates should be familiar with routine testing procedures
microwave links, and candidates should equer the equir control. Extensive use is made of SH Applications, which will be treated with strictest confidence, should be sent accompanied by C.V. and U.K. telephone contact to:

Chief Engineer Television
Pubai Radio \& Colour Television
PO Box 1695, Dubai, United Arab Emirates
The Contracts will be for two years and full details of conditions will be available at the preliminary
interviews to be held in London in mid-March. Salaries will range from PDS 12.000 - PDS 14.00 tax free interviews to be held in Lo.
depending on experience.

(1)

ROHDE\&SCHWARZ

SENIOR TEST AND CALIBRATION ENGINEERS
With a background in RF and microwaves, experienced in analogue, digital
techniques. Iogic and microprocessor controled A ATE.
also vacancies exiss for

TEST \& CALIBRATION ENGINEERS We offer an exceptional salary \star Performance related bonus scheme \star Training
abroad \star Prospects of promotion $\star A$ wide variety of work $\star A$ happy atmosphere Non-contributory pension scheme \star Subsidised restaurant. Please write or phone to.
Mr. A. St. Aubyn, extension 43

Roebuck Road
aveley Chessington Surrey KT91.

HILLINGDON AREA HEALTH AUTHORITY MOUNT VERNON HOSPITALAND AREA WORKS Applications are invited for:

2 TECHNICIAN POSTS

The holder of the first post will assist in the planned preventative
maintenance and first line call-out servicing of electromedical equipment. The appointee will be out the Arvicing or orke ectromedical
but seconded to work in the Physisc Departishmen The holder of the second post will poin thent Worksol The holder of the second post will Ioin the team of electronic and Regional Radiotherapy Centre and the Medical Physics Department
The team is being expanded because of the installation of a new Line Accelerator. years' experience as M post, ONC, HNC, HND or equivalent and. three Salary scale $£ 4605$ rising to $£ 5952$ plus $£ 398$ London Weighting per Application forms and further particulars from Personnel Department.

ELECTRONICS
TECHNICIAN
(Medical Physics Technician III)
$\ddagger 4605-$ - $55952+£ 398$ L.W.)
 requiectromedical equipmenti in
of ele elt
Westminster District based at

 Westminster Hospital. Write for ap
plication torm to: The Secretary
Dent Dlication form toi The secretary
Dept of Clinical Measureme
Westminter Hospital, 65 Romne
West

UNIVERSITY OF SURRE DEPARTMENT OF MUSIC

Sor Recording tethinicine
Recording and Mobil
 Aprii 1980 under review)
A
A

Technical Assistants

Like a challenge?

A stimulating future awaits you if you can prove yourself capable of being trained as a BBC Television Engineer. Joining as a Technical Assistant is the first step along this oad, and vacancies now exist for you to become a trainee member of an expert operation and maintenance team working in one of the four principal Technical Departments in Television which comprise Studios, News, Video Tape Recording and Outside Broadcasts. In each of these areas you will be engaged on operational or maintenance work and will receive full training whilst at work with the BBC Engineering Training Centre at Evesham, which will equip you to qualify as a BBC Engineer within approximately 2 years. Most of the jobs are shift working and involve a 12 hour day, 7 days a fortnight shift pattern.
We are looking for young people with a good general education-'O' Levels in English, Maths and Physics essential, 'A' Levels in the latter two subjects preferred, alternatively an O.N.C. in Electronics,OR Part I C \& G Telecommunications Course (No. 271). In addition you should be able to relate your theoretical knowledge to practical application. You must
be at least 18 years old and have normal hearing and colour vision.
Minimum starting salary $£ 4080$ p.a. (including London Weighting). May be higher for candidates with exceptional qualifications. Extra payments for weekend and shift working.
For full details and an application form, please complete and return the coupon below, enclosing a self addressed envelope at least 9 " x 4 ", to The Engineering Recruitment Officer, BBC, Broadcasting House, London W1A 1AA, quoting reference 80.E.4016/WW.

The Engineering Recruitment Officer, BBC, Broadcasting House,London W1A1AA(reference 80.E.4016/WW) Name Address
\qquad Tel. No \quad (231)

Installation and Maintenance Engineers

 forshipborne electronics equipmentUNIVERSITY OF ST. ANDREWS CHIEF TECHNICIAN department of psychology

Marconi Avionics at Welwyn Garden City are leading the world in the development of complex shipborne digital signal processing equitmentand we now require
additional electronics engineers, men and women, to join teams in the following special ist areas of our Project Services Department.-

Ship Fitting
In this area responsibilities will cover all aspects of shipfitting.from an early stage in design, including definition of the interfaces between the signal processor and other
on-board equipment; installation specifications; connector schedules; participation on-board equipment; installation specifications; connector schedules; ; participati
in installation; setting to work and acceptance testing to customer satisfaction.

Maintenance

This covers in-service maintenance and post-design services with some involvement in setting to work and acceptance testing activities.
While these positions are based at Welwyn Garden City, travel will be necessary
throughout the UK and possibly overseas.

UNIIERSITY OF OXFRRD DEPARTMENT OF PSYCHIATA ELECTRONICS TECHNICIAN

A high level of practical skill is required together with experience of working on computer-based equipment, possibly as an electronics Technician/Fitter in the
Services. An $\mathrm{ANC} / \mathrm{HNC}$ qualfication or equivalent in-service training would be Services.A
Good salaries and an attractive range of benefits will be offered
Write with details of experience to Rod Cook, Marconi Avionics Limited, 26-28The Hydeway, Welwyn Garden City, Herts. Telephone Welwyn Garden 28511 extn. 15.

MARCON
AMMONICS

ELECTRONICS ENGINEERS

Careers in Oil Exploration

We are looking for young electronics engineers with degree or
equivalent qualifications to join our marine seismic acquisitio equivalent
company.
This is a field position with the successful apolions technical crew of one of of our exp the sutuoccesstul applicants joining the
seismic techniques. Ther wor on-board training in seismic techniques. They will start as Assistant Technicians with a
salary of $£ 7,000+p$.a. and one month's leave after each 2 months

The seismic industry offers an interesting career with worldwide travel
and rapid promotion for the right person
and rapid promotion for the right person
Sefel Geophysical is a member of the Sefel group, which has seismic
processing centres in Houston, Denver, Calgary, London, and land
exploration in North America.

Please write with full curriculum vitae to
Keith Byrne
Keith Byrne
Sefel Geophy
Sefel GGophysic
Turriff Building
Great
Great West Road, Brentiord Middleses, TW8 9 HY
or telephone: $01-5683273$
quoting reference $T 102$

CAPITAL ONDON W1P 1 HG

 III THE UK's No. 1 ELECTRONICS AGENCYJesign, Dev. \& Test to $£ 9,000$ Ask for Brian Cornwell SALES To $£ 12,000+$ Car Ask for Ken Sykes FIELD SERVICE to $£ 8,000+$ Car Ask for Paul Wallis We have vacancies in ALL AREAS of the U.K. Telephone 01-6375551 (3 lines) ${ }_{(229)}$ SUMLOCK BONDAIN LTD.
MICRO-COMPUTER SPECIALISTS

INSTALLATION SOFTWARE ENGINEERS to advise on hardware and software, to test compatability of
various equipments. To modify and construct small items of equipment. Extensive experience not necessary but sound electronic and micro knowledge and ability to drive essential.
Preferably with O N.C or City and Guilds Salary negotiab Preferably with
Pension scheme.
Apply Mark Wratten, Sumlock Anita House, Clerkenwell
Close, London EC1. Phe

 London \& Exeter
 £6,000-10,300

Multitone lead the world in the design and manufacture of sophisticated radio
paging systems.
Continued success in this advanced technology industry has led to expansion
in all sectors of our operation
This overall growth creates the need to expand our development potential by
Transmitter Development Engineers
Based at our modern plant in Exeter, you'll be responsible for the developmen
of $A M$, PM \& FM transmitters in the 25 MHz to 520 MHz utilising the components of of AM, PM \& FM tran
today's technology.

Development Engineers

Working in our well-equipped Research and Development Laboratories, you'll be actively involved in the design of miniature personal communications system
This will entail integrating RF technology with 'state-of-the-art' control devices. When you join Multitone, you'll be given early project responsibility and ehjoy a stimulating working environment where individual achievement is a basic objective,
We'll

We'll offer you an excellent initial salary in the range of $£ 6,000-£ 10,300$, according to qualifications and experience. relocation where appropriate and, for the London vacancies only, local housing may be available and flexible working hours,
If you're looking for better rewards'and a brighter, more challenging future
Please write to, or better still telephone, Brian Young at the address below.
Personnel Department
Multitone Electric Co. Ltd.,
multitone

Mobile Radio Communications
Development Engineers

We are Europe's leading exporters of two way radio communication systems and as such can offer you the chance to work on exciting new
develo

Country work in a dynamic company, please contact us now
*
Hand portable or mobile equipment design, AM or FM, in the VHF or UHF range
Transmitter and receiver design

- Digital control, Encoding and Decoding

Low power microprocessors and RF synthesisers
You should be educated to degree/HND level, and have at least 3 year ant design experience
Benefits include 25 days holiday, first class Pension and Sick Pay Scheme and generous relocation assistance where appropriate.

Salaries will depend upon experience, and will range from $\mathrm{c} . \mathrm{£} 6,000$ to
c. $£ 8,200$ per annum.

These positions are open to both men and women.
Please apply by 'phone or letter to: Alan Depauw, Pye Telecommunication
Pye Telecom

Put us to the test

For a challenging electronic career.
In the last 50 years Kelvin Hughes have played an increasingly vital In the last 50 years Kelvin Hughes have played an increasingly
role in the development of radar and sonar to their present level of role in the deve
sophistication.

As the marine division of Smiths Industries-an important large company with multiple interests in new technology-we now supply the equipment and instrumentation needs of commercial and naval fleets a over the world.

Our small production runs, often to stringent ministry specifications, make extremely heavy demands on our testing standards. To enhance our facilities we are currently looking for a Test EquipmentDesign Enginee
wo wir also be responsible for test documentation.
You should be a fully-qualified man or woman capable of circuit deack your Flectronic HNC or degree with an interest in, or experience of, Basic/Controller Computer applications for semi-automatic test methods.

We will support your competitive salary with the generous range of sonal benefits appropriate to a progressive company.
Please write with brief personal and ca
ils to: Lesley Buckland, Kelvin Hughes, details to: Lesley Buckland, Kelvin Hughes,
New Northi Road, Hainault, Ifford, Essex. Or phone 01-500 1020

UNIVERSITYCOLLEGELONDON
DEPARTMETOFPHSICS
ASTRONOMY ELECTRONICS TECHNICIAN

 weeks paid aniual holiday plys
statutor and customary dys at
Christmas and Easter arount

 College Lon
don WCIE
 FIELD SERVICE ELECTRONICS ENGINEERS

DEPARTMENT OF PHYSICS SERIOR EXPERIEMENTAL OFFICER/EXPERIMEI

To asist with developing equipment
and ssstersm for collectitng and pro-
ens cossisngtems dian Successtul applicant
will work in
 special instruments, evtc. Degree
equivalent
Rualifications necessar

 Application formis may be obtaine
 designing and developing a new range of microprocessor başed terminal Our continuing expansion has created opportunities for applicants with a good knowledge of hardware and software, and preferably with an diagnostic routines and programmes for our Systems Support Personnel and Evaluation and Quality Assurance Departments.
Ideally you will be qualified to HND/degree level in electronics, or you should have considerable related experience. In eithe
progressive environment with good future prospects.

Salary will relate to individual experience and circumstances but will not be a limiting factor. Relocation expenses will be given where ecessary
For further details please contact
Don Buckland
Product Reliability Manager
Burroughs Machines Ltd.
Surrey, CRO 4NZ. Tel: 01-686 0355

Burroughs

Communications Foremen

Libya

Occidental, one of today's most progres
sive and rapidly expanding international oil companies, require communications expert to supervise the installation, maintenance and field production areas in Libya, including
fin HFF/AM/FM equipment, HF-SSB Trans eivers, LF radio beacons, TDM alarm system eleprinters etc.

Candidates must have at least five years experience in installing, maintaining and
repairing radio, telephone and microwave systems, some of which should syisory level.

Tax free salary
These desert based positions are on
single status with a continuous work ingle status with a continuous work
schedule of 33 days working, 21 days leave and airfare paid to point of origin for each
fieldbreak. Other benefits include BUPA cover ieldbreak. Other benefits include BUPA cover
or employee and eligible family members, laundry and meals on site plus the usual benefits associated with a large established
company. ompany
Please send your resume with full personal and work experience to Patricia
Conneely, Occidental of Libya Recruiting 16 Palace Street, London SW1E 5BO.

Imen L London Eacation Authority
GARNETT COLLEGE

Electrical Engineering Resource Centre Technician (Grade 4)

 Chief Technician at the college. ($*$ Reff)

SIMULATOR
TECHNICIAN

DKL AGENCY

Aimited number of permanent
contract, high paying/caree

opimizing assignents.
ark.
 ELECTRonics TeChilician (Graza

 rogrammer aliteady riteseard

Radio Technicians Work in Communications R\&D and add to your skills

```
carry out research and development in radio
communications and their security, including related
under investigation, including long-rang type of system is microwave and telephony.
```

Your job as a Radio Technician will concern you in dour job as a Radio echnician will concern you in
developing, constructing, installing, commissioning,
testing, and maintaining our equipment esting, and maintaining our equipment. In performing processing equipment in the audio to microw wide range of involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of echnology on a broad front and widen your area o
expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital sommunications, valuable experience in modern logic and

Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects our knowledge and you will be encouraged to tak
have other centres in the UK most of which like but we heltenham, are situated UK, most of which, like ocations. All our centres require resident Radio echnicians and can call for others to make working visits.
There will also be some opportunities for short trips here will also be some opportunities for short trips
You should be at least 19 rears of ho You should be at least 19 years of age, hold or expect to
obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principle
of telecommunications and radio, together with experience of maintenance and the use of test equipmen you are, or have been in HM Forces your Service trade may allow us to dispense with the need for formal
qualrcations
egistered disabled people may be considered
Pay scales for Radio. Technicians start at $£ 3900$ per he road to posts carrying substantially wore put you on liso opportunities for overtime and on-call work, paying ood rates.
Get full details from our Recruitment Cheltenham (0242) 21491, Ext 2269 write to him at GCHO, Oakley, Priors Road, Cheltenham, Glos GL52 5AJ. will invite suitable applicants (expenses paid)
for interview at Cheltenham.

BROMPTON HOSPITAL

Medical Electronics Technician

required to undertake work involving maintaining installing and developing medical electronics equipmen Applicants should have a good general knowledge of
electronics. Previous hospital experience not essential Salary, which will depend on experience, will be within the ange $£ 4280$ - $£ 6350$ inclusive.
Further information available from the Physicist in Charge,
Mr. R. B. Logan-Sinclair, Tel: 01-352 8121, Ext. 4252 . Application forms available from Miss J. A. Jenks, Personnel Manager, Brompton Hospital, Fulham Road, London SW3 6 HP . Tel: as above, Ext. 4357.

VIDEO RECORDING EQUIPMENT
SERVICE MANAGER
With the outstanding success in marketing a new range of airborne
and high speed video tape equipment we need to ango and high speed video tape equipment we need to appoint a top rate
video service engineer. Full product training will be iven in video service engineer. Full product triaining will be given in eithe
America ori Japan to a suitably qualified or experienced person. The successful applicant will probably be aged between 25 and
35. A Company
extensive travel with we providided ayt the UK a woill be neceessary.ionary period, as exensive fravel within the Uk will be necessary We pay top rates and the salary will be commensurate with
experience and ability. We offer 4 weeks' annual holiday, free life assurance, sick scheme and free canteen facilities.
For further details and application form please apply to

Ann Janes
Personnel Officer
John Hadland (P.I.) Ltd
Newhouse
Newhouse Laboratories Newhouse Roabratories
Hemel Hempingdon Hemel Hempstead
Herts. HP3 OEL

RadioOfficers

When the ship comes home, why not settle down?

We're the Post Office Maritime Service and we have everything in a job that you'd want: the kind of work you're trained to do, good pay, iob security and all the comforts of home where they really count - at home!
Vacancies exist at several coast stations for qualified Radio Officers to carry out a variety of duties that range from
Morse and teleprinter operating to traffic circulation and radio telephone operating. And for those with ambition, th prospects of promotion to senior management are excellent. You must have a United Kingdom Maritime Radio Communication Operator's General Certificate or First Class Certificate of proficiency in Radio-telegraphy or an
equivalent certificate issued by a Commonwealth.

Administration or the Irish Republic. Preferably you should have some sea-going experience.
The starting pay at 25 or over will be about $£ 5,381$; after 3 years service this figure rises to around $\hbar, 087$. (If between 19 and 24 your pay on entry will vary between and there is a good pension scheme, sick-pay benefits and at least 4 weeks' holiday a year.
For further information, please telephone Kathleen Watson on Freefone 2281 or write to her at the following address: IE Maritime Radio Services Division (WW4),
IS8.1.1.2 Room 643 Union House IS8.1.1.2, Room 643 , Union House,
St. Martins-le-Grand, London EC1A 1 AR.
Post Office Telecommunications

TEST ENGINEER

To £6500 p.a. MIDDLESEX

We make an extensive range of environmental test ystems, covering every applicion from strain meas urement to the vibration of vehicles and buildings.

If you are:
qualified to HNC Radio and TV, and also interested in mechanics
experienced in analogue and/or digital work;
then we can offer you a wide variety of testing experience, working with newly-developed modular conrol systems.
lease call or write to the Personnel Manage

SERVOTEST LIMITED Sarsfield Road Greenford, Middle
Tel. 01-998 1552

THANK HEAVEN FOR EINSTEIN

Young FLEXIBLE ENGINEERS to work in an industr-sponsored university
group engaged on a wide variety of projects including: Visual communication at

 for tumperababas oce

Charles Airey Associates

DESIGN ENGINEERS

COMPUTER DISC AND DRUM MEMORY SYSTEMS

VERMONT RESEARCH is a fast-growing, international company about to embark on a number of new project which will result in both new designs and new applications for the current product range. \star I you want
nvolvement, responsibility and job satisfaction. \star If you prefer the smaller organisation where you nd rewarded on pefformance alone. \star If you wish to earn a "higher than average" salary - then consider the following positions

CIRCUIT DESIGN ENGINEER
 £7,000-£10,000

This position is for those experienced engineers with direct data channel or small servo systems ex perience, or for engineers who prefer discrete, low areas of expertise:

Closed loop servo systems
Write / read preamplifiers
Power supplies

ELECTRO-MECHANICAL DESIGN ENGINEER
 £6,000-£9,000

Engineers with experience of packaging computer peripheral volume production, or with experience of disc drive packaging, airflow systems, linear motor advantage.

DESIGN ENGINEER (DIGITAL ELECTRONICS)

Engineers with experience of micro-processor based "eripherals or peripheral controllers, to work on art" track following and addressing systems.

SENIOR DRAUGHTSMAN
 $£ 5,000-£ 7,000$

Experience of precision electro-mechanical devices essential. Direct industry experience a major advan-
tage, as the applicant should be capable of following through production design problems with a high level of self-motivation.

JUNIOR DRAUGHTSMAN £3,500-£5,000

Tel. Mrs. Amery on Leatherhead (03723) 76221. Answering service after 5.30 p.m. -74759 Or apply in writing to VERMONT RESEARCH limited

Cleeve Road, Leatherhead, Surrey KT22 7NB

COMPUTER PERIPHERALS

ELECTRONIC

SERVICE ENGINEERS
LONDON - BRISTOL - MANCHESTER - GLASGOW
Our Company specialises in both sales and servicing of
Discotheque Sound and Lighting equipment. We currently have vacancies for engineers who have had previous experience of either Hifi, Studio PA or similar equipment.
Excellent salary plus quarterly bonus and P.P.P. Please telephone or write to Andree Mead, Personnel Director
Roger Squire's Eanat Trading Estate Herts ENS 5SA.

Electronics R\&D

Join us in the forefront of technology

Radio Technicians Communications Systems Engineers

Good communications systems are vital to the oil industry. And increasingly, the industry relies on our client to design,
install and maintain those systems- which in why they require
Radio Technicians and Communications Systems Engineers.
There are vacancies in the North Sea oilfields and overseas
for Technicians with experience of $H F, M F, V H F$ and $U H F$, and Tor Technicians with experience of $H F$, MF, VHF and UHF, and
fngineers with Tropospheric scatter, Multiplex and Microwave Engineers with Tropospheric scatter,
experience to HNC level and above.
The work is interesting and varied and the rates of pay are
excellent -over $£ 11,000$ p.a. for Engineers working in the excellent over $£ 11,000$ p.a. or
North Sea 2 weeks on 2 weeks off). Radio Technicians receive a basic ssary
offshore allowances/field breats. . Overseas posts offer very
attractive earnings along with tax concessions. attractive earnings along with tax concessions.
Additionally, our client has vacancies for Systems Design
Engineers (ideally qualified to Degree/HNC level) and for a Engineers (ideally qualified to Degree/HNC Level) and or
Communications Systems Sales Engineer to promote the
sales of the Company's Services in selected geographical sammunications Systems Sales engineer to promote the
sareas.
The company is based in E. Anglia, with sites in Aberdeen and $^{\text {. }}$ Lerwick. Where relocation is necessany, our client will make a expenses, as well as providing a temporary accommodation.
allowance. allowance

Please reply in confidence to BRJ Appointments
 BARTLETT,RAY $8-20$ Thorpe Road E JARVIS LTD.

If there is any company to whom you do not wish your reply to
be forwarded please mark that Cound be forwarded, please mark that Compan
the outside of your application envelope

Take your pick

HF-VHF-UHF-

Microwave Optics \& Acoustics A challenging and full career in Government Service.
Minimum qualification - HNC Starting salary up to $£ 6,737$. Please apply for an application form to the Recruitment Officer.(Dept.ww 1), H.M. Government Communications Centre, Hanslope Park, Milton Keynes MK19 7BH.

WIRELESS TECHNICIAN

Applications are invited for one post of
Scottish Home and Health Department.
LOCATION:
The post is in Inverness.
QUALIFICATIONS:
Candidates must hold an Ordinary National Cerificate in Electronic or Electrical Engineering or a City and Guilds of London Institute
Cerriticate in an appropriate subject or a qualification of a higher or Certivicate in an appp
EXPERIENCE:
STARTING SALARY:

Applicants should have sound theoretical and practical knowledge Of Radio Engineering and Radio Communications equipment in HF VHF and UHF bands. The work involves installation and mainte-
nance of equipment located at considerable distance from head quarters. A clean current driving licence and ability to drive private nd commercial vehicles are essential.

The appointment is unestablished initially but there is prospect of
an established (i.e. permanent) appointment after 1 year's an established (i.e. permanent) appointment after 1 year's

Application forms and further information are obtainable from
 Edinburgh EH1 3DN (quote
8400, Ext. 4317 or 5028).
Closing
1980.

DEVELOPMENT ENGINEERS

To work on the design of new broadcast TV studio products. Applicants should have some knowledge of television studio techniques and be qualified to HND or Degree level

TEST

 ENGINEERSAt senior and intermediate level to work on our range of advanced broadcast television studio products, including colour and monochrome television studio cameras.
Applicants should have an up-to-date knowledge of digital and linear circuit techniques gained from experience working on television studio equip-
ment, radar equipment or similar sophisticated products and qualified to HND, HNC or equivalent level.

SYSTEMS ENGINEER

You would be involved in all stages of product management on the design and building of studio and mobile TV systems and should be prepared for occasional world-wide travel. The appointment work, or in the operational side of television with the ability to take charge of people and deal with problems in the field on your own initiative.
Employment benefits include excellent salary enerous holidays, free life and health in surance ension scheme, subsidised meals and relocation expens.
forms to Jean Smith at the address given below orms to Jean Smith at the address given below.

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of communications test instruments and A.T.E. We have a number of interesting opportunities in our Design, Production and Service Departments and we can offer attractive salaries, productivity bonus, pension and sick If you are interested to hear more, please fill in the following details:-

Marconi instruments

How to cut through

 the old boy net workYou can't possibly
ments by yourself.
And what about all those jobs ther And what about all those jobs that are never
advertised because ther good people hear
about them first? -You giss about them first? - YOU MISS OU Break into that closed circle by enrolling with
Lansdowne. We llt thump your career detailis onto Lansdowne. Weilt thump your career details onto
the desks of senior managers the thasands of
compans - except those you ask us not to companies
approach.
They'II consider you for the immediate jobs
and they'll have you on file for the future.
and they'll have you on file for the futur
When they want you they'll ring you - not us

- and you're immediately hhorttisted for a job
you mghe never have heard about.
Just fill in the coupon and send for our
Career Summary Form and explanatory leaflet. And do it at once because it's the only one
that's worth thousands of applications.

Our clients would like to meet men and women aged $20-40$, Our clients would like to meet men and women, aged $20-10$,
earning between $£ 4,000-\mathrm{e8}, 500$ in any of the following: test engineering
CALIBRATION ENGINEERING
ELECTRONICS ENGINEERING
ELLLCTRONICS ENGGNERRII
ELECTRONICS SALES
ELECTRONICS SALES \square
SERVICE ENGINEERING
SERVELOPMENT ENGINEERING \square

- Mr./Mrs./Miss

A

- Stuart Tait Lansdowne Appointments Register

Iansdowne

TOP JOBS IN ELECTRONICS Posts in Computers, Medical, Comms, etc. ONC to Ph.D. Free Comms, service.
 Phone or write: BUREAUTECH, LOND O251.

ELECTRONICS TECHNICIAN (Grad
6) required by Physiology
Dep ior the tiesign and construction
biophsical inntrumentation to
hised in
inscol

Electronics Engineers Salaries up to $£ 7,000$
Livingston Hire, Europe's leading rental company of Livingston Hire, Europes leading rental company
sophisticatedelectronic test equipment, urgently
require the following electronics engineers. SALES ENGINEERS (Internal and External) Sales Engineers are required to join our developing sales
We want people with a wide knowledge of proprietary We want people with a wide knowledge of proprietary
test and measuring equipment and an intelligent
appreciation of its applications. We offer the opportunity for people who have initiative
to use it.
Write or telephone to David Kennedy SENIOR TEST ENGINEERS
Applicants must have a good:all round knowledge of
electronic test of tre following equipment. Engineers with exper types are particularly
invited

帾 to apply:
R.F. Test Equipment including
Spectrum Analysers Acoustic

Spectrum Analysers Acoustic
Equipment (B \& K, C.E.L. tec.) Whilst academic qualifications to H.N.C. are desirable, emphasis will be placed upon abiity. Generaly, suitable
applicants will have had at least three years directly applicants wexilience.
The vacancies are internal and based at our modern,
fully -quipped premises in N.W. Lordon.
The test equipment we stock is the finest in the world
and our engineers always have available the correct
and our engineers always have available the correct
instruments to repair and calibrate these equipments.
Write or telephone to Bernard Ellett
Company benefits include

- Free lunches in our own canteen
- Free lunches in our own cantee
Free coffee, tea etc.
4 weeks + holidays per annum - 4weeks + holidays per annum Pension Scheme

(1) Live Livingston Hire

Unique opportunities for

Technician Engineers

Havant, Hampshire
uptof7.1k

 Enamineer as.
The work will be extremely varied involvinin the deveclopmen, evaluation, debuging,
design proving and field rials of a fudanced rad
 associaled analogu
microporocessors.
Ideally applicants will bequalified to CkG, HNC or equivialentlevel, have had several
years Teass experience of radio communication seuirenent and be be amiliar with both

Salaries offered will be highly auractive and bhere are excellent prospects for career
progesesion, booth within the technician engineer rrades and the Company, with

 amenties
If you feel you can meet our requirements please write or elepephone now, with brief
delails of auaificationos and experiene

aca RCA SOLID STATE COS/MO MICRORROCEESSORS AND
SUPPORT SYSTEMS DATA SUPPOR
By RCA
By
H/bof electronics
CALCuIATIONS CALCLLATIONS FOR
ENGMERS \& TECNIICIANS
VM Kauman
ELCCTOM
Price: 14.7

 OESIGNOFPHASE
EXPP CIICCUTTS
EXPE
 PROGAAMMING
by ... Leventhal
Price: $\mathbf{E 5 . 7 5}$ byL. A. Leventhal Price: $\mathbf{£ 5} .75$
LOGCI \&MEMORY
EXPERIMENTS USING TTLIC's

 THE EUROPEAN CMOS SELEC-
TIIN
by Motorola
*ALL PRICES INCLUDÉ POSTAGE *
THE MODERN BOOK CO Soceialist tin \sin Bientific
α Technical Boofs 19-21 PRAED STREET Phone $402 \cdot 9176$

ENGINEERING CO-ORDINATOR

tion. Television Systems and Re-- search Ltd., have a vacancy for a qualified electron.
based at their Engineeering Department near Oxford. The position offers interesting and varied work covering many
aspects of electronic engineering including c.c.t. . equipment audio and video tape recorders and players, film proijectors, , ardion, and tivo
networks and associated equipment, P. A., simultaneous translation networks and associated equipment, P.A., simultaneous translation
installations, and computer controlled information storage and retrie-
val installations, and computer controlled information storage and retrie-
val systems. The successful applicant will have sound theoretical
knowledge and practical working experience in one or knowledge and practical working experience in one or more of the
above fields, must be self-motivated and prepared, from time to time above fields. must be self-motivated and prepared
to visit T .S.R. installations in the U.K. and abroad.
Duties will include liaison with manufacturers of special products,
trouble shooting, compiation of spare parts lists, the selection and trouble shooting, compilitaion of spare parts lists, the selection and
supervision of installation/maintenance contractors and the control supervision of instalation maint
of T.S.R. maintenance engineers.
Good salary and terms and conditions, 27 -hour, 5 -day week. A com
pany car will be provided.
Apply to: The Enginering Manager, T.S.R. Systems, Units $7 / 8$,
Station Field Industrial Estate, KILLINGTON, Oxford. Tele-

LINTECH INSTRUMENTS LIMITED
 ELECTRONIC SYSTEMS

 ENGINEER/ PRODUCT CHAMPION Esill be responsibite for turnerider develiopmenent towards and reaisation of customer read

 poilutunites tor occasional travel

famiornior eearsin moustrial fevelopmen

Opportunities for
 VHF/UHF Service Engineers

You won't believe it until you see it So you'd better come and have a look. Do you have experience working on If you've got final City \& Guilds that would
VHFIUHF telecommunications equip-
be an advantage though it's not absoVHFIUHF telecommunications equipment. Feeling a bit cheesed off perhaps - not enough interesting work to do, even less
prospects? Then it's time for a move. We're the market leaders in radio tele-
phone and tone and voice paging systems - in fact the competition's
not even in sight. We need sevice engineers in both London and Luton to job there's a bank of test equipment that
will knock your eves out! will knock your eyes outt
And that's just the beginning! The ComAnd tis spending approximately two
pany'ion the
million pounds on modernisation programmes which include the installation
of new micro-processor based paging of new micro-processor based paging
systems and the complete modernisation of the existing control centres to
accommodate direct communications accommodate direct
between car and office. Iutely necessary. Or perhaps youre in
micro-processors now and would like to get into telecommunications.
You get a car to go with the job - fitted with a radio telephone so you can keep in touch. Salary negotiable and there's
an initial familiarisation course on the existing equipment and the opportunity to go on other 'courses if you want to
gain additional experience. In fact aboul eighteen months, from now you could be on the way - to a more senior job in the Company -
Sounds too good to be true - then
come and see for yourself. Get in touch come and see for yourself. Get in touch
with Peter Lyons who will arrange to with Peter Lyons who will arrange to
show you around - that way well both show you around - that way
know what we're getting into.
Ring or write to Rnow what we re getting into.
Ring or write to: Peter Lyons, Air Call
Technical Services Divisision. 18 Lambeth Teccnical Sevvices Divivison, 18, Lambeth
High Street, London SE1. 01-834 9000.
ARP CALI

SURPLUS TO INDUSTRIAL

By Order of the Official Receiver For Sale by Tender
4 Disco type speakers with covers. Simpson Model VFO 1402. Audiotronic Record deck Model ATT 100 M , AKAI 4000 open reel tape recorder. Gaumont Kalee - meter. W.D. Oscilloscope CT436. Apply: Morris, Marshall \& Poole, 28 Broad Street 2717 (0938).

ARTICLES FOR SALE

DESIGN
Design
Devervicopment

\qquad

\qquad

What's an electronics enthusiast like you doing in an advertisement like this?

TO MANUFACTURERS, WHOLESALERS \&
BULK BUYERS ONLY BULK BUYERS ONLY

 Metalamite, C2 C 20
Convergence Pots,
Axial Radial eet. Axial, Radial, etc.
Transformers, cho
connecting wires, Transtormers, chokes, hopts, tuners, speakers, cables, screened wires,
conenecting wires, screws, nuts, transistors, 1 Cs, Diodes, etc., etc.
Alt connecting wires, screws, nuts, rransistors, ICs., Diodes, etc., etc.
All at Knockout prices. Come and pay us a visit. Telephone 4452713 ,
4450749 . 4450749 BROADFIELDS \& MAYCO DISPOSALS

$\frac{58}{88}$
$\frac{8}{7} 1$
7
7
7
7

Republic of Botswana Telecommunications Radio Engineer
Up to $£ 10,550$ plus allowances
Candidates should be qualified as Radio Engineers
(eg. HNC, C $\&$ G Electricallelectronics land have several years' experience in the installation and maintenance of
ground navigation aids (VORFIME/NDB), air ground
communication system (VHFHF) and communication equipment used for fixed telecommunication networks
(Radio teletypel HF transceivers). Duties will include the (Radio teletype/H- transceivers). Duties wilincluce the
installation and maintenanceopequipment and on-the-
iob training of staff of the Civil Aviation Department. job training of staff of the Civil Aviation Department.
 Benefits include free passages, generous paid leave,
children's holiday visit passages and education allowances, appointment grant and interest-free car loan. The terms on which civil and public servants may be
released if selected for appointment will be subject to agreement with their present employers. For full details and application form write quoting
MX/237/WD.

 8.94 A -12.4 6 GZ sweeper plug in

All Eauipment working
DUTCHGATE LTD 94 ALLERISTAN GARDESS
SHOLNG SOUTAMFNON
SOTON (0703) 4311233

2 ELECTRONIC ENGINEERS
customers at the European Ievel. The successfful marketing, to create new circuit concents sing groups and products. Customer support on existing products and ducation to degree stand ord job. Education to degree standard or equivalent in Electronic
Engineering and a good command of the English language

SENIOR APPLICATIONS

 ENGINEER (Radio \& TV) circuitry.
A knowlegge of digital techniques would be a definite
advantage.
SENIOR APPLICATIONS ENGINEER (Microprocessors)

\qquad
 1211 GENEVE 20,
Tel: 022/99.14.76

TV TUBE

 REBUILDING!
 We also offer equipment for testing ans
manutacuruin eprices.

-

TEST EQUIPMENT CALIBRATION AND REPAIR
 DUTCHGATE LTD. PRINTED CIRCUIT MANUFACTURRE
Very fast, reliable service. Lowes

 $\frac{\text { tonhampstead, Devon. }}{\text { REPTret, }}$

 DESIGN SERVICE. Electronic De
sign Develooment

sige
sign
Sin
An

WIRELESS WORLD, APRIL_ 1980

INDEX TO ADVERTISERS
Appointments Vacant Advertisements appear on pages 133-151

Acoustical Mfg. A.E.L. Crystals Ambit Internationa Anders Electronics Ltd Antex Apex Apex Aspen Electronics Lo.................. Bach-Simpson Bamber, B. Electronics Bell \& Howell BlB Hi-Fi Bremi Bull, J. Cambridge Learning Carston Electronics Ltd. Catronics . Chiltmead Ltd Computer Appreciation Controls, W. Continental Specialities Cropico Ltd Crimson Elektrik Dalston Elec Display Electronics Dominus Eddystone Radio Ltd. Edicron Rearch Educational Pub. Services Electronic Brokers Ltd. Electrovoice Products Ltd. Faircrest Eng Farnell Instruments Ltd. Ferranti Semiconductors Field Tech	

OVERSEAS ADVERTISEMENT

AGENTEAS ADVERTISEMENT
AGERTS. Bolgium: Norbert Hellin, 50 Rue de Chemin Veat.
f.9100. Boulogne, Paris.

STEP INTO A NEW WORLD WHEN YOU DISCOVER D

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Applications don't come much more critical than digital watch manufacture.
Here, discrete deposits of Multicore Oxide-Free Solder Cream are screened onto the PCB. A precision job, with no risk of operator error or fatigue. And, a convenient temporary adhesive for the positioning of components.

Solder-flow is accomplished by simply passing the units over a hot plate.
Fast. No oxide to contend with. No dirty residues.
This manufacturer says Multicore Oxide-Free Solder Cream has reduced reject rate substantially and offers superior soldering quality.
> ordinary solder creams cannot match this profitable performance. Here's why...
. because ordinary solder creams or pastes contain rosinbased flux mixed with solder powder produced by atomisation. This means that every particle of the powder is covered with a layer of oxide - slowing down the soldering process, leaving a dirty flux residue and causing solder globules to stick to the flux and possibly fall loose into the equipment aftershock or vibration. But, Multicore have developed a very special method of producing solder powders that are virtually oxide-free.
These can be use din cream form - comprising an homogeneous stable mixture of pre-alloyed powder and flux, designed specifically for hybrid microcircuits, PCB's and critical component joints.
When heated, Multicore Oxide-Free Solder Creams melt and flow as quickly and cleanly as rosin-cored solder wire, leaving a pale clear flux residue without solder globules.
The in-built quality of Multicore Oxide-Free SolderCreams make them the ideal specification for almost any application calling for low cost yet high reliability.
They are available in a wide range of combinations of solder alloys, fluxes, particle sizes, flux contents and viscosities - often replacing solder preforms.
However, if you have an application that specifically requires preforms, remember that Multicore supply a wide variety of those as well.
Multicore Solders Ltd are Ministry of Defence Registered Contractors and on Qualified Products List QQ-S-571E of U.S. Defense Supply Agency for solder creams and preforms.

Compare these electron-microscope enlargements at $\times 240$ magnification:

'Ordinary' cream solder powder, revealing poor particle shape and dross.

Solder powder from Multicore Oxide-Free Solder Cream displays clean, uniform particles.

For full information on Oxide -Free Solder Creams orany otherMulticore products, please write on your company's letteríead direct to:
Multicore Solders Limited,
Maylands Avenue. Hernel Hempstead, Hers, HP2 7EP. Telephone:HemelHempstead 3636. Telex: 82363.

[^0]: ww - 055 FOR FURTHER DETAILS

[^1]: A double-sided glass-fibre p.c.b. for the colour gin at 23 Keyes Road, London NW2 for 8.50 inclusive of v.a.t. and UK postage
 oller tinned and drilled board measures 235

